Answers: Revision Paper 4 | | Question Answer Marks | | Mauka | | Guidance | | |----------|-----------------------|-----|--|-----------|-------------------------------------|---| | <u> </u> | _ | OII | | | Et | | | 1 | (i) | | $\frac{1}{2}$ x 8 x AB x sin30 = 20 | M1 | Equate correct attempt at area of | Must be using correct formula, including ½ | | | | | $\overline{AB} = 10$ | | triangle to 20 | Allow if subsequently evaluated in radian mode (gives | | | | | | | | -3.95AB = 20) | | | | | | | | If using $\frac{1}{2} \times b \times h$ then must be valid use of trig to find | | | | | | | | h | | | | | | l | | | | | | | | A1 | Obtain 10 | Must be exactly 10 | | | | | | [2] | | | | \vdash | (22) | _ | $BC^2 = 8^2 + 10^2 - 2 \times 8 \times 10 \times \cos 30$ | [2]
M1 | Attempt to use correct cosine rule, | Must be using correct cosine rule | | | (ii) | | $BC = 8 + 10 - 2 \times 8 \times 10 \times \cos 30$
BC = 5.04 | IVII | | Allow M1 if not square rooted, as long as BC^2 soi | | | | | BC = 3.04 | | using their AB | Allow if subsequently evaluated in radian mode (gives | | | | | | | | 11.8), but 11.8 by itself cannot imply M1 | | | | | | | | Allow if correct formula seen but is then evaluated | | | | | | | | incorrectly (using $(8^2 + 10^2 - 2 \times 8 \times 10) \times \cos 30$ gives | | | | | | | | 1.86) | | | | | | | | Allow any equiv method as long as valid use of trig | | | | | | | | Allow any equiv inclined as long as valid use of trig | | | | | | A1 | Obtain 5.04, or better | If > 3sf, allow answer rounding to 5.043 with no errors | | | | | | | | seen | | | | | | [2] | Questic | on | Answer | Marks | | Guidance | |---|---------|----|---|--------|---|--| | 2 | (i) | | $54^{\circ} \times \frac{\pi}{180} = \frac{3\pi}{10}$ | M1 | Attempt to use conversion factor of $\frac{\pi}{180}$ | Must use $\frac{\pi}{180}$ or $\frac{2\pi}{360}$ or equiv method such as fractions of a circle Can also use 1 rad = 57.3° or 1° = 0.0175 rad Must use fractions correct way up so multiplying by $\frac{180}{\pi}$ is M0 0.942 (or better) with no working will imply M1 | | | | | | A1 [2] | Obtain $\frac{3\pi}{10}$ | Allow exact simplified equiv ie 0.3π A0 if not fully simplified No ISW if decimal equiv (0.942) given as final answer However, if both decimal and exact answers seen, then allow A1 if, and only if, the exact answer is indicated as their only intended final answer (eg underlined) | | | (ii) | | $\frac{3\pi}{10}r + 2r = 60$
r = 20.4 | M1* | Attempt perimeter in terms of r | Must be using $r\theta$ as arc length, and also including $2r$ in the perimeter attempt Allow use of an incorrect θ from (i) Only allow incorrect θ if seen in (i), so $0.3r + 2r$ is M0, unless 0.3 was their (i) Could be using decimal equiv for θ (0.942) M0 if using 54° , unless part of a valid attempt such as fractions of a circle M0 if using radians incorrectly eg 0.942π | | | | | | M1d* | Equate to 60, and attempt to solve | Must be a valid solution attempt, and go as far as an attempt at r
M0 for $2.3\pi r = 60$, or similar
Could be working exactly or in decimals | | | | | | A1 | Obtain 20.4, or better | If > 3sf, allow answers in the range [20.39, 20.40] | | | | | | [3] | | | | | | | | | | | | | Questi | on | Answer | Marks | | Guidance | |---|--------|----|---|-------|---|--| | 3 | (i) | | $3^{3} + (3 \times 3^{2} \times kx) + (3 \times 3 \times (kx)^{2}) + (kx)^{3}$ $= 27 + 27kx + 9k^{2}x^{2} + k^{3}x^{3}$ | M1 | Attempt expansion | Must attempt at least 3 of the 4 terms Each term must be an attempt at the product of the relevant binomial coeff soi, the correct power of 3 and the correct power of kx Allow M1 if powers used incorrectly with kx ie only applied to the x and not to k as well Binomial coeff must be numerical, so ${}^{3}C_{2}$ is M0 until evaluated Allow M1 for expanding $c(1 + \frac{kx}{s})^{3}$, any c Allow M1 for reasonable attempt to expand brackets | | | | | | A1 | Obtain at least two correct terms | Allow 3^3 for 27 and 3^2 for 9
Allow $(kx)^2$ and/or $(kx)^3$ unless later incorrect
Terms could just be listed | | | | | | A1 | Obtain at least one further correct term | Allow 3 ³ for 27 and 3 ² for 9
Allow (kx) ² and/or (kx) ³ unless later incorrect
Terms could just be listed | | | | | | A1 | Obtain fully correct simplified expansion | Must now be 27 and 9, not still index notation Allow $(kx)^2$ and/or $(kx)^3$ unless later incorrect Must be a correct expansion, with terms linked by '+' rather than just a list of 4 terms No ISW if correct final answer is subsequently spoiled by attempt to 'simplify' eg dividing by 27 | | | | | | [4] | | | | Question | Answer | Marks | | Guidance | |----------|--|-------|---|---| | (ii) | $9k^{3} = 27$ $k^{2} = 3$ $k = \pm \sqrt{3}$ | M1 | Equate their coeff of x^2 to their constant term and attempt to solve for k | Must be equating coefficients not terms - allow recovery if next line is $k^2 = 3$, but M0 if x^2 still present at this stage Must attempt k , but allow if only positive square root is considered If a division attempt was made in part (i) then allow M1 for using either their original terms or their 'simplified' terms | | | | A1 | Obtain $k = \pm \sqrt{3}$ | Must have \pm , or two roots listed separately
Final answer must be given in exact form
A0 for $\pm \sqrt{(^{27}/9)}$
Must come from correct coefficients only, not from
terms that were a result of a division attempt | | | | [2] | | SR allow B1 if $k = \pm \sqrt{3}$ is given as final answer, but inconsistent use of terms / coefficients within solution | | | | | | | | | | | | | | Que | estion | Answer | Marks | | Guidance | |------|--------|---|-------|--|--| | 4 (i | i) | $\log_3 x^4 - \log_3 (x+4) = \log_3 \frac{x^2}{x+4}$ | B1* | Obtain $\log_3 x^2 - \log_3 (x+4)$ | Allow no base
Could be implied if both log steps done together
Allow equiv eg $2(\log_3 x - \log_3 (x + 4)^{0.5})$ | | | | | B1d* | Obtain $\log_3 \frac{x^2}{x+4}$ or equiv single term | CWO so B0 if $eg \frac{\log x^2}{\log (x+4)}$ seen in solution
No ISW if subsequently incorrectly 'simplified' $eg \log_3(\frac{x}{4})$
Must now have correct base in final answer - condone | | | | | [2] | | if omitted earlier | | (i | ii) | $\frac{x^{2}}{x + 4} = 3^{2}$ $x^{2} = 9(x + 4)$ $x^{2} - 9x - 36 = 0$ $(x - 12)(x + 3) = 0$ $x = 12$ | M1* | Attempt correct method to remove logs | Equation must be of format $\log_3 f(x) = 2$, with $f(x)$ being the result of a legitimate attempt to combine logs (but condone errors such as incorrect simplification of fraction) Allow use of their (i) only if it satisfies the above criteria, so $x^2 - (x + 4) = 9$ is M0 whether or not in (i) | | | | | A1 | Obtain any correct equation | Not involving logs | | | | | M1d* | Attempt complete method to solve for x | Solving a 3 term quadratic - see additional guidance Must attempt at least one value of \boldsymbol{x} | | | | | A1 | Obtain $x = 12$ as only solution | Must be from a correct solution of a correct quadratic, and A0 if other root (if given) is not $x = -3$
A0 if $x = -3$ still present | | | | | [4] | | Not necessary to consider $x = -3$, and then discard, but A0 if discarded for incorrect reason | | | | | | | NB Despite not being 'hence' allow full credit for other valid attempts, such as combining $log_3(x + 4)$ with $log_3 0$ or right-hand side before removing logs, or | | | | | | | starting with $\log_3 x - \frac{1}{2}\log_3(x+4) = 1$ | | | | | | | SR in (i) $\frac{\log x^2}{\log (x+4)}$ becoming $\log_3 \frac{x^2}{x+4}$ was penalised as an error in notation, but is eligible for full credit in (ii) | | | Question Answer | | Answer | Marks | | Guidance | |---|-----------------|-----|--|--------|---|---| | 5 | (a) | | $\int (2x^3 - 3x^2 + 4x - 6) dx$ $= \frac{1}{2}x^4 - x^3 + 2x^2 - 6x + c$ | M1 | Expand brackets and attempt integration | Must be reasonable attempt to expand brackets, resulting in at least 3 terms, but allow slip(s) Integration attempt must have an increase in power by 1 for at least 3 of their terms | | | | | | A1FT | Obtain at least three correct (algebraic) terms | Following their expansion
Allow unsimplified coefficients | | | | | | A1 [3] | Obtain fully correct expression, including +c | Coefficients must now be fully simplified A0 if integral sign or dx still present in final answer, but allow $\hat{J} =$ | | | (b) | (i) | $\left[-6x^{-1}+2x^{-2}\right]^{a}$ | M1 | Attempt integration | Integral must be of the form $k_1x^{-1} + k_2x^{-2}$, any k_1 and k_2 as long as numerical | | | | | $[-6x^{-1} + 2x^{-2}]^{a}$ $= (-6a^{-1} + 2a^{-2}) - (-6 + 2)$ $= 4 - 6a^{-1} + 2a^{-2}$ | A1 | Obtain fully correct expression | Allow unsimplified coefficients Allow presence of $+c$ | | | | | | M1 | Attempt correct use of limits | Must be $F(a) - F(1)$ ie correct order and subtraction
Allow $F(x)$ to be any function with indices changed
from the original, even if differentiation appears to
have been attempted | | | | | | A1 | Obtain $4 - 6a^{-1} + 2a^{-2}$ aef | Coefficients should now be simplified, and constant terms combined Could use negative indices, or write as fractions A0 if $+c$ present in final answer A0 if integral sign or dx still present in final answer, but condone presence for first 3 marks ISW any subsequent work, such as further attempts at simplification, multiplying by a^2 , equating to a | | | | | | [4] | | constant, or writing as an inequality | | | Questic | on | Answer | Marks | | Guidance | |---|---------|------|--|--------|---|--| | | | (ii) | 4 | B1FT | State 4, following their (i) | Their (b)(i) must be of the form $k + k_1a^{-1} + k_2a^{-2}$, with all coefficients non-zero and numerical Do not allow $4 + 0$ or equiv Must appreciate that a limit is required, so B0 for $<$, \approx , \rightarrow , 'tends to' etc Condone confusion over use of 0 and ∞ Final answer of 4 may result from starting again, rather than using their (b)(i) | | 6 | (i) | | $u_k = 5 + 1.5(k-1)$
5 + 1.5(k-1) = 140
k = 91 | M1* | Attempt <i>n</i> th term of an AP, using $a = 5$ and $d = 1.5$ | Must be using correct formula, so M0 for $5 + 1.5k$
Allow if in terms of n not k
Could attempt an n th term definition, giving $1.5k + 3.5$ | | | | | | M1d* | Equate to 140 and attempt to solve for k | Must be valid solution attempt, and go as far as an attempt at k Allow equiv informal methods | | | | | | A1 [3] | Obtain 91 | Answer only gains full credit | | | (ii) | | $S_{16} = \frac{120(1 - 0.9^{16})}{1 - 0.9}$ = 978 | M1 | Attempt to find the sum of 16 terms of GP, with $a = 120$, $r = 0.9$ | Must be using correct formula | | | | | | A1 | Obtain 978, or better | If > 3sf, allow answer rounding to 977.6 with no errors seen Answer only, or listing and summing 16 terms, gains | | | | | | [2] | | full credit | | | | | | | | | | Question | Answer | Marks | | Guidance | |----------|--|-------|---|--| | (iii) | $\frac{1}{2}N(10+(N-1) \times 1.5) > \frac{120}{1-0.9}$ $N(1.5N+8.5) > 2400$ | B1 | Correct sum to infinity stated | Could be 1200 or unsimplified expression | | | $3N^2 + 17N - 4800 > 0$ $N = 38$ | B1 | Correct S _N stated | Any correct expression, including unsimplified | | | 17 – 30 | M1* | Link S_N of AP to S_∞ of GP and attempt to rearrange | Must be recognisable attempt at S_N of AP and S_∞ of GP, though not necessarily fully correct Allow any (in)equality sign, including < Must rearrange to a three term quadratic, not involving brackets | | | | A1 | Obtain correct 3 term quadratic | aef - not necessary to have all algebraic terms on the
same side of the (in)equation
Allow any (in)equality sign | | | | M1d* | Attempt to solve quadratic | See additional guidance for acceptable methods
May never consider the negative root
M1 could be implied by sight of 37.3, as long as from
correct quadratic | | | | A1 | Obtain $N = 38$ (must be equality) | A0 for $N \ge 38$ or equiv in words eg 'N is at least 38'
Allow A1 if 38 follows =, > or \ge being used but A0 if
38 follows < or \le being used
A0 if second value of N given in final answer | | | | [6] | | Must be from an algebraic method - at least as far as obtaining the correct quadratic | | | | | | | | | | | | | | | Questic | on | Answer | Marks | Guidance | | | |---|---------|----|-----------------------------------|-------------|---|--|--| | 7 | (i) | on | $Q = x^2 - 4x + 3$ $R = 0$ Answer | Marks
M1 | Attempt complete division by (x + 1), or equiv Obtain fully correct quotient | Must be complete method to obtain at least the quotient (ie all 3 terms attempted) but can get M1A1 if remainder not considered Long division - must subtract lower line (allow one slip) Inspection - expansion must give at least three correct terms of the cubic Coefficient matching - must be valid attempt at all coeffs of the quadratic, considering all relevant terms each time Synthetic division - must be using -1 (not 1) and adding within each column (allow one slip); expect to see -1 1 | | | | | | | | | Do not ISW if their explicitly stated quotient contradicts earlier working (eg correct in division but then stated as 'quotient = 3') If using coefficient matching then $A = 1$, $B = -4$, $C = 3$ is not sufficient for A1. | | | Question | Answer | Marks | | Guidance | |----------|---|-------|--|---| | | | A1 | Obtain remainder as 0, must be stated explicitly | Not sufficient to just see 0 at bottom of division attempt (algebraic or synthetic) Allow 'no remainder' for 'remainder = 0' $f(-1) = 0$ is not sufficient for A1 unless identified as remainder If coefficient matching then allow $R = 0$ SR B1 for remainder of 0 with nothing wrong seen - it could just be stated, or from $f(-1)$, and could follow either M0 or M1 for attempt to find quotient. However, if remainder is attempted both by division attempt and $f(-1)$ then mark final attempt at remainder | | (ii) | $x^{2}-4x+3=(x-1)(x-3)$
hence $x=-1, 1, 3$ | M1 | Attempt to solve their quadratic quotient | Allow for solving any three term quadratic from their attempt at quotient, even if M0 in (i) See additional guidance for acceptable methods Could now be a different quotient if there is another division attempt with the factor as $(x-1)$ or $(x-3)$ | | | | A1 | Obtain $x = 1, 3$ | M1A1 if both roots just stated with no method shown (but no partial credit if only one root correct) | | | | B1 | State $x = -1$ | Independent of M mark B0 if $x = -1$ is clearly as result of solving their quadratic quotient only Must be seen in (ii) - no back credit if only seen in (i) | | (iii) | $\frac{dy}{dx} = 4x^3 - 12x^2 - 4x + 12$ $4x^3 - 12x^2 - 4x + 12 = 0$ hence $x^3 - 3x^2 - x + 3 = 0$ AG | M1 | Attempt differentiation | Decrease in power by 1 for at least 3 of the terms (could include $9 \rightarrow 0$)
Not sufficient to substitute their roots to show $y = 0$ | | | | A1 | Equate to 0 and rearrange to given answer | Must equate to 0 before dividing by 4 | | | | [2] | | | | Question | Answer | Marks | | Guidance | |----------|---|-------|--|---| | (iv) | $\begin{bmatrix} \frac{1}{5}x^5 - x^4 - \frac{2}{3}x^3 + 6x^2 + 9x \end{bmatrix}_{-1}^{8}$ $= \left(\frac{153}{5}\right) - \left(-\frac{53}{15}\right)$ | M1* | Attempt integration | Increase in power by 1 for at least 3 of the terms Must be integrating equation of curve, not f(x) | | | $=\frac{512}{15}$ | A1 | Obtain fully correct expression | Allow unsimplified coefficients
Allow presence of $+c$ | | | | M1d* | Attempt correct use of correct limits | No follow-through from incorrect roots in (ii) Must be $F(3) - F(-1)$ ie correct order and subtraction Could find area between 1 and 3, but must double this for M1 If final area is incorrect then must see evidence of use of limits to award M1; if all that is shown is the difference of two numerical values then both must be correct eg just $\left(\frac{153}{5}\right) - \left(-\frac{23}{15}\right) = \frac{482}{15}$ is M0 as no evidence for second term | | | | A1 | Obtain ⁵¹² / ₁₅ , or any exact equiv | Decimal equiv must be exact ie 34.13, so A0 for 34.13, 34.133 etc Allow A1 if exact value seen, but followed by decimal equiv | | | | [4] | | Answer only is 0/4 - need to see evidence of integration, but use of limits does not need to be explicit | | | | | | | | | | | | | | (| Questic | on | Answer | Marks | | Guidance | |---|---------|----|---------------------------------------|-------|--|---| | 8 | (i) | | 2 (units) in the positive x-direction | M1 | Correct direction | Identify that the translation is in the x-direction (either positive or negative, so M1 for eg '2 in negative x-direction') Allow any terminology as long as intention is clear, such as in/on/along the x-axis Ignore the magnitude | | | | | | A1 | Fully correct description | Must have correct magnitude and correct direction, using precise language - such as 'in the x-direction', 'parallel to the x-axis', 'horizontally' or 'to the right' A0 for in/on/along the x-axis etc Allow M1A1 for '2 in the x-direction' as positive is implied A0 for 'factor 2' 'Units' is not required, but A0 for 'places', 'spaces', 'squares' etc | | | | | | [2] | | Allow in vector notation as well, so M1 for $\binom{\kappa}{0}$ and M1A1 for $\binom{2}{0}$ | | | (ii) | | sf $\frac{1}{9}$ in the y-direction | M1 | Correct direction, with sf of $\frac{1}{9}$ or 9 | Identify that the stretch is in the y-direction, with a scale factor of either $\frac{1}{9}$ or 9 (or equiv in index notation) Allow just $\frac{1}{9}$ or 9, with no mention of 'scale factor' Allow exact decimal equiv for $\frac{1}{9}$ Allow any terminology as long as the intention is clear, such as in/on/along the y-axis | | | | | | A1 | Fully correct description | Must have correct scale factor and correct direction, using precise language - such as 'in the y-direction', 'parallel to the y-axis' or 'vertically' A0 for in/on/along the y-axis etc Must now have 'scale factor' or 'factor' | | | | | | [2] | | Allow 'positive y-direction' (not incorrect as graph is wholly above x-axis) | | Questic | on Answer | Marks | Guidance | | |---------|---|-------|-----------------------------------|---| | (iii) | intersect at $(0, \frac{1}{9})$ | B1* | Correct sketch, in both quadrants | Curve must tend towards the negative x-axis, but not touch or cross it, nor a significant flick back upwards If from plotted points then there must be enough of the graph shown to demonstrate the correct general shape, including the negative x-axis being an asymptote Ignore any numerical values given | | | | B1d* | State $(0, \frac{1}{9})$ | Condone $x = 0$, $y = \frac{1}{9}$ as an alternative, but $x = 0$ must be stated explicitly rather than implied Allow no brackets around the coordinates Allow exact decimal equiv for $\frac{1}{9}$. Allow just $\frac{1}{9}$ as long as marked on the y-axis Allow BOD for $(\frac{1}{9}, 0)$ on y-axis, but not if just stated | | | | [2] | | Just being seen in a table of values is not sufficient
Ignore any other labelled coordinates | | (iv) | $\log 3^{x-2} = \log 180 (\text{or } x - 2 = \log_3 180)$ $(x - 2)\log 3 = \log 180$ $x - 2 = 4.7268$ $x = 6.73$ | M1* | Introduce logs and drop power | Can use logs to any base, as long as consistent on both sides, and allow no explicit base as well. The power must also be dropped for the M1 Brackets must be seen around the $(x-2)$, or implied by later working. If taking \log_3 then base must be explicit | | | | M1d* | Attempt to solve for x | Correct order of operations, and correct operations so M0 for $log_3 180 - 2$ M0 if logs used incorrectly eg $x - 2 = log(\frac{180}{8})$ | | | | A1 | Obtain 6.73, or better | If > 3sf, allow answer rounding to 6.727 with no errors seen 0/3 for answer only or T&I If rewriting eqn as 3 ^{x-2} = 3 ^{4.73} then 0/3 unless evidence of use of logs to find the index of 4.73 SR If using index rules first then B1 for 3 ^x = 1620 | | | | [3] | | M1 for attempting to use logs to solve $3^x = k$
A1 for 6.73 | | Question | Answer | Marks | Guidance | | |----------|--|-------|---|---| | (v) | $0.5 \times 1.5 \times \left\{ 3^{-1} + 2 \times 3^{0.5} + 3^2 \right\}$
= 9.60 | B1 | State the 3 correct y-values, and no others | B0 if other y-values also found (unless not used) Allow for unsimplified, even if subsequent error made Allow decimal equivs | | | | M1 | Attempt use of correct trapezium rule to attempt area between $x = 1$ and $x = 4$ | Correct placing of y-values required y-values may not necessarily be correct, but must be from attempt at using correct x-values The 'big brackets' must be seen, or implied by later working Could be implied by stating general rule in terms of y ₀ etc, as long as these have been attempted elsewhere and clearly labelled Could use other than 2 strips as long as of equal width (but M0 for just one strip) Must have h as 1.5, or a value consistent with the number of strips used if not 2 | | | | A1 | Obtain 9.60, or better (allow 9.6) | Allow answers in the range [9.595, 9.600] if > 3sf Answer only is 0/3 Using the trap. rule on the result of an integration attempt is 0/3, even if integration is not explicit Using two separate trapezia can get full marks Using other than 2 trapezia (but not just 1) can get M1 only | | | | [3] | | Olly State of the | | Question | | on | Answer | Marks | Guidance | | | |----------|------|----|---|-----------|---|--|--| | 9 | (i) | | 2n
a | B1 | State $\frac{2\pi}{a}$ | Any exact equiv Allow in degrees ie $\frac{360}{\alpha}$ | | | | | | | [1] | | B0 if given as a range eg $0 \le x \le \frac{2\pi}{a}$ | | | | (ii) | | $\frac{1}{5}\pi a = \pi - \frac{2}{5}\pi a$ hence $a = \frac{5}{3}$ $k = \frac{1}{2}\sqrt{3}$ | M1 | Attempt to use symmetry of sine curve, or equiv | Allow any correct relationship between the two solutions, in radians or degrees Could also identify that the period must be $\frac{6}{5}\pi$ | | | | | | | A1 | Obtain $a = \frac{5}{8}$ | Any exact equiv
CWO, but allow working in degrees | | | | | | | A1
[3] | Obtain $k = \frac{1}{2}\sqrt{3}$ | Any exact equiv, but not involving sin CWO, but allow working in degrees A0 if from incorrect a | | | | | | | [2] | | Ao ii from incorrect a | | | | | | Alternative solution
$\sin(\frac{1}{5}\pi a) = \sin(\frac{2}{5}\pi a)$
$\sin(\frac{1}{5}\pi a) = 2\sin(\frac{1}{5}\pi a)\cos(\frac{1}{5}\pi a)$ | M1 | Attempt to use correct sin2A identity | As far as $2\cos(\frac{1}{5}\pi a) = 1$ | | | | | | $2\cos(\frac{1}{5}\pi a) = 1$, hence $\frac{1}{5}\pi a = \frac{\pi}{3}$
$a = \frac{5}{3}$ | A1 | Obtain $a = \frac{5}{8}$ | | | | | | | $k = \frac{7}{2}\sqrt{3}$ | A1 | Obtain $k = \frac{1}{2}\sqrt{3}$ | Question | Answer | Marks | Guidance | | |----------|--|-------|--------------------------------|---| | (iii) | $\tan(\alpha x) = \sqrt{3}$ $\alpha x = \frac{\pi}{3}, \frac{4\pi}{8}$ $x = \frac{\pi}{5a}, \frac{4\pi}{5a}$ | B1 | State $tan(ax) = \sqrt{3}$ | Allow B1 for correct equation even if no, or an incorrect, attempt to solve Give BOD on notation eg $\frac{\sin}{\cos}(\alpha x)$ as long as correct equation is seen or implied at some stage Allow $\tan(\alpha x) - \sqrt{3} = 0$, or equiv Allow B1 for identifying that $\alpha x = \frac{\pi}{s}$ or 60° even if equation in $\tan(\alpha x)$ not seen – M1 would then be awarded for an attempt at x | | | | M1 | Attempt to solve $tan(ax) = c$ | Attempt $^1/_a \tan^{-1}(c)$, any (non-zero) numerical c M0 for $\tan^{-1}(\frac{c}{a})$ Allow if attempted in degrees not radians M1 could be implied rather than explicit M1 can be awarded if using a numerical value for a | | | | A1 | $Obtain x = \frac{\pi}{sa}$ | Must be in radians not degrees Allow any exact equiv eg $\frac{\pi}{a}$ as long as intention clear - but A0 if this is then given as $\frac{a\pi}{a}$ | | | | A1 | Obtain $x = \frac{4\pi}{sa}$ | Must be in radians not degrees Allow any exact equiv eg $\frac{4\pi}{a}$ as long as intention clear - but A0 if this is then given as $\frac{4a\pi}{s}$ Allow $\frac{\pi}{sa} + \frac{\pi}{a}$, unless then incorrectly simplified If more than two solutions given, then mark the two smallest ones and ISW the rest eg $\frac{\pi}{sa}$, $\frac{4\pi}{sa}$, $\frac{7\pi}{sa}$ would be A1A1 but $\frac{\pi}{sa}$, $\frac{2\pi}{sa}$, $\frac{4\pi}{sa}$ would be A1A0 | | | | [4] | | | | Question | | Answer | Marks | Guidance | | |----------|--|---|----------|--|--| | | | Alternative solution
$\sin^{2}(\alpha x) = 3 \cos^{2}(\alpha x)$ $4\sin^{2}(\alpha x) = 3 \text{ or } 4\cos^{2}(\alpha x) = 1$ $\sin(\alpha x) = \pm \frac{\sqrt{2}}{2}\sqrt{3} \text{ or } \cos(\alpha x) = \pm \frac{1}{2}$ $\alpha x = \frac{\pi}{3}, \frac{4\pi}{3}$ $x = \frac{\pi}{3a}, \frac{4\pi}{3a}$ | B1
M1 | Obtain $4\sin^2(ax) = 3$ or $4\cos^2(ax) = 1$
Attempt to solve $\sin^2(ax) = c$ or $\cos^2(ax) = c$ | Any correct, simplified, equation in a single trig ratio Allow M1 if just the positive square root used Attempt $\frac{1}{a}\sin^{-1}(\sqrt{c})$ or $\frac{1}{a}\cos^{-1}(\sqrt{c})$, any (non-zero) numerical c M0 for $\sin^{-1}(\frac{\sqrt{c}}{a})$ M0 for $\cos^{-1}(\frac{\sqrt{c}}{a})$ Allow if attempted in degrees not radians M1 could be implied rather than explicit M1 can be awarded if using a numerical value for a | | | | | Al | Obtain $x = \frac{\pi}{sa}$ | Must be in radians not degrees Allow any exact equiv eg $\frac{\pi}{a}$ as long as intention clear - but A0 if this is then given as $\frac{a\pi}{s}$ Must be in radians not degrees | | | | | Al | $Obtain x = \frac{4\pi}{8a}$ | Allow any exact equiv eg $\frac{4\pi}{a}$ as long as intention clear - but A0 if this is then given as $\frac{4a\pi}{s}$ Allow a correct answer still in two terms, unless then incorrectly simplified If more than two solutions given, then mark the two smallest ones and ISW the rest eg $\frac{\pi}{sa}$, $\frac{4\pi}{sa}$, $\frac{7\pi}{sa}$ would be A1A1 but $\frac{\pi}{sa}$, $\frac{2\pi}{sa}$, $\frac{4\pi}{sa}$ would be A1A0 |