
Revision Paper 2 - Answers

Question Number	Scheme	Notes	Marks
1	$\int (2x^4 - \frac{4}{\sqrt{x}} + 3) dx$		
	$\frac{2}{5}x^5 - \frac{4}{\frac{1}{2}}x^{\frac{1}{2}} + 3x$	M1: $x^n \to x^{n+1}$. One power increased by 1 but not for just $+c$. This could be for $3 \to 3x$ or for $x^n \to x^{n+1}$ on what they think $\frac{1}{\sqrt{x}}$ is as a power of x . A1: One of these 3 terms correct. Allow un-simplified e.g. $\frac{2x^{4+1}}{4+1}$, $-\frac{4x^{-\frac{1}{2}+1}}{-\frac{1}{2}+1}$, $3x^1$ A1: Two of these 3 terms correct.	M1A1A1
		Allow un-simplified e.g. $\frac{2x^{4+1}}{4+1}$, $-\frac{4x^{-\frac{1}{2}+1}}{-\frac{1}{2}+1}$, $3x^1$	
	$= \frac{2}{5}x^5 - 8x^{\frac{1}{2}} + 3x + c$	Complete fully correct simplified expression appearing all on one line with constant. Allow 0.4 for $\frac{2}{5}$. Do not allow $3x^1$ for $3x$ Allow \sqrt{x} or $x^{0.5}$ for $x^{\frac{1}{2}}$	A1
	Ignore any spurious integral signs and ignore subsequent working following a fully correct answer.		
	Correct answer.		[4]
			4 marks

Question Number	Scheme	Notes	Marks
2	$9^{3x+1} = \text{for example}$ $3^{2(3x+1)} \text{ or } (3^2)^{3x+1} \text{ or } (3^{(3x+1)})^2 \text{ or } 3^{3x+1} \times 3^{3x+1}$ or $(3\times3)^{3x+1}$ or $3^2\times(3^2)^{3x}$ or $(9^{\frac{1}{2}})^y$ or $9^{\frac{1}{2}y}$	Expresses 9^{3x+1} correctly as a power of 3 or expresses 3^y correctly as a power of 9 or expresses y correctly in terms of x	M1
	or $y = 2(3x+1)$	(This mark is <u>not</u> for just $3^2 = 9$)	
	= 3^{6x+2} or $y = 6x + 2$ or $a = 6, b = 2$	Cao (isw if necessary)	A1
	Providing there is no incorrect work, allow sight of $6x + 2$ to score both marks Correct answer only implies both marks		
	Special case: 3 ^{6x+1} only scores M1A0		
			[2]
	Alternative using logs		
	$9^{3x+1} = 3^y \implies \log 9^{3x+1} = \log 3^y$		
	$(3x+1)\log 9 = y\log 3$	Use power law correctly on both sides	M1
	$y = \frac{\log 9}{\log 3} (3x + 1)$		
	y = 6x + 2	cao	A1
			2 marks

Question Number	Scheme	Notes	Marl	ks
3.(a)	$\sqrt{50} - \sqrt{18} = 5\sqrt{2} - 3\sqrt{2}$	$\sqrt{50} = 5\sqrt{2}$ or $\sqrt{18} = 3\sqrt{2}$ and the other term in the form $k\sqrt{2}$. This mark may be implied by the correct answer $2\sqrt{2}$	М1	
	$=2\sqrt{2}$	Or $a=2$	A1	
				[2]
(b) WAY 1	$\frac{12\sqrt{3}}{\sqrt{50} - \sqrt{18}} = \frac{12\sqrt{3}}{"2"\sqrt{2}}$	Uses part (a) by replacing denominator by their $a\sqrt{2}$ where a is numeric. This is all that is required for this mark.	M1	
	$= \frac{12\sqrt{3}}{"2"\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{12\sqrt{6}}{4}$	Rationalises the denominator by a correct method e.g. multiplies numerator and denominator by $k\sqrt{2}$ to obtain a multiple of $\sqrt{6}$. Note that multiplying numerator and denominator by $2\sqrt{2}$ or $-2\sqrt{2}$ is quite common and is acceptable for this mark. May be implied by a correct answer. This is dependent on the first M1.	dM1	
	$= 3\sqrt{6} \text{ or } b = 3, c = 6$	Cao and cso	A1	
				[3]

4.5			
(b)		A positive cubic which does not pass	
		through the origin with a maximum to the left of the y-axis and a minimum to the	M1
	↑	right of the y-axis.	
		Maximum at (-2, 0) and minimum at	
		(3, -12). Condone missing brackets. For	
	,	the max allow just -2 or (0, -2) if marked	
		in the correct place. If the coordinates are	
	(-2, 0)	in the text, they must appear as (-2, 0) and	
		must not contradict the sketch. The curve	A1
		must touch the x-axis at $(-2, 0)$. For the	
		min allow coordinates as shown or 3 and	
		-12 to be marked in the correct places on	
	(0, -4)	the axes. In cases of ambiguity, the sketch has precedence.	
		•	
		Crosses y-axis at (0, -4). Allow just -4 (not +4) and allow (-4, 0) if marked in	
		the correct place. If the coordinates are in	
		the text, they must appear as (0, -4) and	A1
	(2.12)	must not contradict the sketch.	
	(3, -12)	In cases of ambiguity, the sketch has	
		precedence.	
			[3]
5.	y = -4x - 1	Attempts to makes y the subject of the linear equation and substitutes into the other equation.	M1
J.	$\Rightarrow (-4x - 1)^2 + 5x^2 + 2x = 0$	Allow slips e.g. substituting $y = -4x + 1$ etc.	IVII
		Correct 3 term quadratic (terms do not need to	
	$21x^2 + 10x + 1 = 0$	be all on the same side).	A1
		The "= 0" may be implied by subsequent work.	
		dM1: Solves a 3 term quadratic by the usual rules (see general guidance) to give at least one	
		value for x. Dependent on the first method	
	$(7x+1)(3x+1) = 0 \Longrightarrow (x=)-\frac{1}{7}, -\frac{1}{3}$	mark.	dM1 A1
		A1: $(x =) - \frac{1}{7}, -\frac{1}{3}$ (two separate correct exact	
		answers). Allow exact equivalents e.g.	
		$(x =) - \frac{6}{42}, - \frac{14}{42}$	
		M1: Substitutes to find at least one y value (Allow substitution into their rearranged	
		equation above but not into an equation that has	
	3 1	not been seen earlier). You may need to check	
	$y = -\frac{3}{7}, \frac{1}{3}$	here if there is no working and x values are	M1 A1
		incorrect.	
		A1: $y = -\frac{3}{7}$, $\frac{1}{3}$ (two correct exact answers)	
		Allow exact equivalents e.g. $y = -\frac{18}{42}$, $\frac{14}{42}$	
		of need to be paired rearranged to $y = 4x + 1$, this gives the correct	
		es, if it is not already lost, deduct the final A1.	
			[6]
	a - 1 a -	5 to 1	l I
	$a_1 = 4, \ a_{n+1} =$		
6. (a)		M1: Uses the recurrence relation correctly at least once. This may be implied by	
		$a_2 = 5 - 4k$ or by the use of	
	$a_2 = 5 - ka_1 = 5 - 4k$		
		$a_3 = 5 - k $ (their a_2)	M1A1
	$a_3 = 5 - ka_2 = 5 - k(5 - 4k)$	A1: Two correct expressions – need not be simplified but must be seen in (a).	
		Allow $a_2 = 5 - k4$ and $a_3 = 5 - 5k + k^2 4$	
		Isw if necessary for a ₃ .	[2]
			[2]

(b)	$\sum_{1}^{3} (1) = 1 + 1 + 1$	Finds 1+1+1 or 3 somewhere in their solution (may be implied by e.g. $5 + 6 - 4k + 6 - 5k + 4k^2$). Note that	B1	
	r=1	$5+6-4k+6-5k+4k^2$ would score B1 and the M1 below.		
	$\sum_{r=1}^{3} a_r = 4 + 5 - 4k'' + 5 - 5k + 4k^2''$	Adds 4 to their a_2 and their a_3 where a_2 and a_3 are functions of k . The statement as shown is sufficient.	M1	
	$\sum_{r=1}^{3} (1+a_r) = 17 - 9k + 4k^2$	Cao but condone '= 0' after the expression	A1	
	Allow full marks in (b) for o	correct answer only		
				[3]
(c)	500	cao	B1	
				[1]

7.	$y = 3x^2 + 6x$	$\frac{1}{3} + \frac{2x^3 - 7}{3\sqrt{x}}$	
	$\frac{2x^3 - 7}{3\sqrt{x}} = \frac{2x^3}{3\sqrt{x}} - \frac{7}{3\sqrt{x}} = \frac{2}{3}x^{\frac{5}{2}} - \frac{7}{3}x^{-\frac{1}{2}}$	Attempts to split the fraction into 2 terms and obtains either $\alpha x^{\frac{1}{2}}$ or $\beta x^{-\frac{1}{2}}$. This may be implied by a correct power of x in their differentiation of one of these terms. But beware of $\beta x^{-\frac{1}{2}}$ coming from $\frac{2x^3-7}{3\sqrt{x}} = 2x^3-7+3x^{-\frac{1}{2}}$	M1
	$x^n \to x^{n-1}$	Differentiates by reducing power by one for any of their powers of x	M1
	$\left(\frac{dy}{dx} = \right) 6x + 2x^{-\frac{2}{3}} + \frac{5}{3}x^{\frac{3}{2}} + \frac{7}{6}x^{-\frac{3}{2}}$ In an otherwise fully correct solution, penaltic	A1: 6x. Do not accept $6x^1$. Depends on second M mark only. Award when first seen and isw. A1: $2x^{-\frac{2}{3}}$. Must be simplified so do not accept e.g. $\frac{2}{1}x^{-\frac{2}{3}}$ but allow $\frac{2}{\sqrt[3]{x^2}}$. Depends on second M mark only. Award when first seen and isw. A1: $\frac{5}{3}x^{\frac{1}{3}}$. Must be simplified but allow e.g. $1\frac{2}{3}x^{1.5}$ or e.g. $\frac{5}{3}\sqrt{x^3}$. Award when first seen and isw. A1: $\frac{7}{6}x^{-\frac{3}{2}}$. Must be simplified but allow e.g. $1\frac{1}{6}x^{-\frac{11}{2}}$ or e.g. $\frac{7}{6\sqrt{x^3}}$. Award when first seen and isw.	A1A1A1A1
	In an otherwise <u>fully correct solution</u> , penalis		
	133		[6]
	•	•	

0()	1	Tru .	1	
8. (a)	$2px^2 - 6px + 4p'' = "3x - 7$	Either: Compares the given quadratic expression with		
	or	the given linear expression using <, >, = , ≠		
	$(n+7)^2$ $(n+7)$	(May be implied)	M1	
	$y = 2p\left(\frac{y+7}{3}\right)^2 - 6p\left(\frac{y+7}{3}\right) + 4p$	or Rearranges $y = 3x - 7$ to make x the subject		
	(3) (3)	and substitutes into the given quadratic		
	Examples $2px^2 - 6px + 4p - 3x + 7 = 0$, $-2px^2 + 6px - 4p + 3x - 7 = 0$			
	,	, , , , , , , , , , , , , , , , , , , ,		
	$2p\left(\frac{y+7}{3}\right)^2 - 6p\left(\frac{y+7}{3}\right) + 4p - y($	$= 0$), $2py^2 + (10p - 9)y + 8p (= 0)$	dM1	
	$y = 2px^2 -$	6px + 4p - 3x + 7		
		g sign errors only. Ignore $> 0, < 0, = 0$ etc.		
	The terms do not need to be collected	Attempts to use $b^2 - 4ac$ with their a , b and c		
		_		
		where $a = \pm 2p$, $b = \pm (-6p \pm 3)$ and		
	E.g.	$c = \pm (4p \pm 7)$ or for the quadratic in y, $a = \pm 2p$, $b = \pm (10p \pm 9)$ and $c = \pm 8p$. This		
	$b^2 - 4ac = (-6p - 3)^2 - 4(2p)(4p + 7)$	$a = \pm 2p$, $b = \pm (10p \pm 9)$ and $c = \pm 8p$. This could be as part of the quadratic formula or as	ddM1	
	$b^2 - 4ac = (10p - 9)^2 - 4(2p)(8p)$	$b^2 < 4ac$ or as $b^2 > 4ac$ or as $\sqrt{b^2 - 4ac}$ etc. If		
	(-1) (-1)	it is part of the quadratic formula only look for		
		use of $b^2 - 4ac$. There must be no x's or y's.		
		Dependent on both method marks.		
	$4p^2 - 20p + 9 < 0 *$	Obtains printed answer with no errors seen (Allow $0 > 4p^2 - 20p + 9$) but this < 0 must	A1*	
	4p 20p + 5 < 0	been seen at some stage before the last line.	AI.	
				[4]
(b)	$(2p-9)(2p-1)=0 \Rightarrow p=$ to obtain $p=$	Attempt to solve the given quadratic to find 2	M1	
	$(2p-3)(2p-1)=0 \Rightarrow p=\dots$ to obtain $p=$	values for p. See general guidance.	IVII	
		Both correct. May be implied by e.g.		
		$p < \frac{9}{2}$, $p < \frac{1}{2}$. Allow equivalent values e.g.		
	0 1	$4.5, \frac{36}{8}, 0.5$ etc. If they use the quadratic		
	$p = \frac{9}{2}, \frac{1}{2}$	20+16	A1	
		formula allow $\frac{20\pm16}{8}$ for this mark but not		
		$\sqrt{256}$ for 16 and allow e.g. $\frac{5}{2} \pm 2$ if they		
		complete the square.		
		M1: Chooses 'inside' region i.e.		
		Lower Limit $Upper Limit or e.g.$		
	$\frac{1}{2}$	Lower Limit $\leq p \leq$ Upper Limit	1	
	Allow equivalent values a $\alpha = \frac{36}{100}$ for $4\frac{1}{100}$	A1: Allow $p \in (\frac{1}{2}, 4\frac{1}{2})$ or just $(\frac{1}{2}, 4\frac{1}{2})$ and	M1A1	
	Allow equivalent values e.g. $\frac{3}{8}$ for $4\frac{1}{2}$	allow $p > \frac{1}{2}$ and $p < 4\frac{1}{2}$ and $4\frac{1}{2} > p > \frac{1}{2}$ but		
		$p > \frac{1}{2}$, $p < 4\frac{1}{2}$ scores M1A0		
		$\frac{1}{2}$ > p > 4 $\frac{1}{2}$ scores M0A0		
	Allow working in terms of x in (b) but the an	swer must be in terms of p for the final ${f A}$ mark.		[4]
	1		1	

9.(a)	John; arithmetic series,	a = 60, d = 15.	
	60 + 75 + 90 = 225* or	Finds and adds the first 3 terms or uses	
	$S_3 = \frac{3}{2} (120 + (3-1)(15)) = 225*$	sum of 3 terms of an AP and obtains the printed answer, with no errors.	B1 *
	Beware	1 -	
	The 12 th term of the sequence is 225 also so look	$\overline{\mathbf{k}}$ out for $60 + (12 - 1) \times 15 = 225$. This is B0 .	
			[1
(b)	$t_9 = 60 + (n-1)15 = (£)180$	M1: Uses $60 + (n-1)15$ with $n = 8$ or 9 A1: $(£)180$	M1 A1
	M1: Uses $a = 60$ and $d = 15$ to select the 8	K:	
	A1: (£)1		
	(Special case (£)165 on		
			[2
	$S = \frac{n}{n}(120 + (n-1)(15))$		
(c)	$S_n = \frac{n}{2} (120 + (n-1)(15))$	Uses correct formula for sum of <i>n</i> terms	
	or	with $a = 60$ and $d = 15$ (must be a correct formula but ignore the value they use for	M1
	$S = \frac{n}{(60 + 60 + (n - 1)/15)}$	n or could be in terms of n)	
	$S_n = \frac{n}{2} (60 + 60 + (n-1)(15))$	n of could be in terms of n)	
	$S_n = \frac{12}{2} (120 + (12 - 1)(15))$	Correct numerical expression	A1
	=(£)1710	cao	A1
	Listing:		
	M1: Uses $a = 60$ and $d = 15$ and finds the sum of at least 12 terms (allow arithmetic slips)		
	A2: (£)17	710	
(4)			[3
(d)	$3375 = \frac{n}{2}(120 + (n-1)(15))$	Uses correct formula for sum of n terms with $a = 60$, $d = 15$ and puts = 3375	M1
		Correct three term quadratic. E.g.	
		$6750 = 105n + 15n^2, \ \ 3375 = \frac{15}{2}n^2 + \frac{105}{2}n$	
	$6750 = 15n(8 + (n - 1)) \Rightarrow 15n^2 + 105n = 6750$		A1
		This may be implied by equations such as	
		$6750 = 15n(n+7)$ or $3375 = \frac{15}{2}(n^2 + 7n)$	
		Achieves the printed answer with no	
	$n^2 + 7n = 25 \times 18$ *	errors but must see the 450 or 450 in	A1*
	$n + n = 25 \times 18$	factorised form or e.g. 6750, 3375 in	AI.
		factorised form i.e. an intermediate step.	
(0)		M1. Attenuets to solve the element to the	[3
(e)	$n = 18 \Rightarrow \text{Aged } 27$	M1: Attempts to solve the given quadratic or states $n = 18$	M1 A1
	$n = 18 \rightarrow \text{Aged } 2/$	A1: Age = 27 or just 27	- MI AI
	Age = 27 only scores both marks (i.e. $n = 18$ need not be seen)		
	Note that (e) is not hence so allow valid atten		
	1	<u> </u>	[2

10.(a)	1		
201(11)	l_1 : passes through (0, 2) and (3, 7) l_2 : goes through (3, 7) and is perpendicular to l_1		
	Gradient of l_1 is $\frac{7-2}{3-0} \left(= \frac{5}{3} \right)$	$m(l_1) = \frac{7-2}{3-0}$. Allow un-simplified.	B1
		May be implied.	
	$m(l_2) = -1 \div their \frac{5}{3}$	Correct application of perpendicular gradient rule	M1
		M1: Uses $y - 7 = m(x - 3)$ with their changed	
	$y - 7 = "-\frac{3}{5}"(x - 3)$	gradient or uses $y = mx + c$ with $(3, 7)$ and	
	or	their changed gradient to find a value for c	M1A1ft
	$y = "-\frac{3}{5}"x + c, 7 = "-\frac{3}{5}"(3) + c \implies c = \frac{44}{5}$	A1ft: Correct ft equation for their perpendicular gradient (this is dependent on both M marks)	
	3x + 5y - 44 = 0	Any positive or negative integer multiple. Must be seen in (a) and must include "= 0".	A1
			[5]
	44	M1: Puts $y = 0$ and finds a value for x from their equation	
(b)	When $y = 0$ $x = \frac{44}{3}$	A1: $x = \frac{44}{3} \left(\text{ or } 14\frac{2}{3} \text{ or } 14.6 \right)$ or exact	M1 A1
(0)		equivalent. $(y = 0 \text{ not needed})$	
	Condone $3x - 5y - 44 = 0$ only leading to the correct answer		
	and condone coordinates written	as (0, 44/3) but allow recovery in (c)	[2]
(-)	CENEDAL	A PRID CA CITA	[2]
(c)		APPROACH:	
	one rectangle. The correct pair of 'base' and 'formula used for a trapezium. If Pythagoras is	of the triangles or one of the trapezia but not just height' must be used for a triangle and the correct sarquired, then it must be used correctly with the discoordinates.	M1
		r calculated coordinates e.g. their $\frac{44}{3}$, $\frac{44}{5}$, $-\frac{6}{5}$	IVII
	etc. But the given coordinates n	nust be correct e.g. (0, 2) and (3, 7).	
	A correct numerical expression for the are	ea of one triangle or one trapezium for their dinates.	A1ft
	Combines the correct areas together correct numerical expressions for areas have been inco	tly for their chosen "way". Note that if correct rrectly simplified before combining them, then this	dM1
	Correct numerical expression for the area of C	dent on the first method mark. PROP. The expressions must be fully correct for	A1
		no follow through.	
	Correct exact area e.g. $54\frac{1}{3}$, $\frac{163}{3}$	$\frac{326}{6}$, 54.3 or any exact equivalent	A1

11. (a)	$y = 2x^3 + kx^2$	$^{2}+5x+6$	
	$\left(\frac{\mathrm{d}y}{\mathrm{d}x} = \right) 6x^2 + 2kx + 5$	M1: $x^n \to x^{n-1}$ for one of the terms including $6 \to 0$	M1 A1
		A1: Correct derivative	[2]
(b)		Uses or states $\frac{17}{2}$ or equivalent e.g. 8.5.	[2]
	Gradient of given line is $\frac{17}{2}$	Must be stated or used in (b) and not just	B1
		seen as part of $y = \frac{17}{2}x + \frac{1}{2}$.	
	$\left(\frac{dy}{dx}\right)_{x=-2} = 6(-2)^2 + 2k(-2) + 5$	Substitutes $x = -2$ into their derivative (not the curve)	M1
		dM1: Puts their expression = their $\frac{17}{2}$	
	"24 – 4k + 5" = " $\frac{17}{2}$ " $\Rightarrow k = \frac{41}{8}$	(Allow BOD for 17 or -17 but not the normal gradient) and solves to obtain a value for <i>k</i> . Dependent on the previous method mark .	dM1 A1
		A1: $\frac{41}{8}$ or $5\frac{1}{8}$ or 5.125	
	Note:		
	$6x^2 + 2kx + 5 = \frac{17}{2}x + \frac{1}{2}$ scores no marks on its	own but may score the first M mark if they	
	substitute $x = -2$ into the lhs. If they rearrange this no ma		
			[4]
(c)		M1: Substitutes $x = -2$ and their numerical k	
	$y = -16 + 4k - 10 + 6 = 4"k" - 20 = \frac{1}{2}$	into $y = \dots$ A1: $y = \frac{1}{2}$	M1 A1
		4	
	Allow the marks for part (c) to be scored in part (b).	[2]
(d)	$y - \frac{1}{2} = \frac{17}{2} (x - 2) \Rightarrow -17x + 2y - 35 = 0$	M1: Correct attempt at linear equation with their 8.5 gradient (not the normal gradient)	[2]
	or	using $x = -2$ and their $\frac{1}{2}$	
	$y = \frac{17}{2}x + c \Rightarrow c = \Rightarrow -17x + 2y - 35 = 0$	2	M1 A1
	or $2y-17x = 1+34 \Rightarrow -17x + 2y - 35 = 0$	A1: cao (allow any integer multiple)	
		1	[2]
	1		