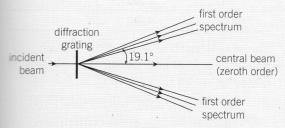
Practice questions

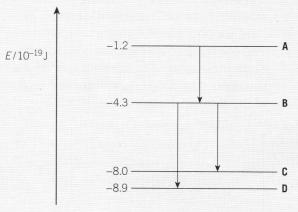

- Describe the formation of a star such as our Sun and its most probable evolution. (6 marks)
 - (ii) Describe the probable evolution of a star that is much more massive than our Sun. (2 marks)
 - b The present mass of the Sun is 2.0×10^{30} kg. The Sun emits radiation at an average rate of 3.8×10^{26} J s⁻¹. Calculate the time in years for the mass of the Sun to decrease by one millionth of its present mass.

 $1 y = 3.2 \times 10^7 s$

(3 marks)

Jan 2011 G485

- 2 This question is about the light from low energy compact fluorescent lamps which are replacing filament lamps in the home.
 - a The light from a compact fluorescent lamp is analysed by passing it through a diffraction grating. Figure 1 shows the angular positions of the three major lines in the first order spectrum and the bright central beam.



▲ Figure 1

- (i) On a copy of Figure 1 label one set of the lines in the first order spectrum **R**, **G** and **V** to indicate which is red, green and violet. (1 mark)
- (ii) Explain why the bright central beam appears white. (1 mark)
- (iii) The line separation d on the grating is 1.67×10^{-6} m.

Calculate the wavelength λ of the light producing the first order line at an angle of 19.1° to the central bright beam. (3 marks)

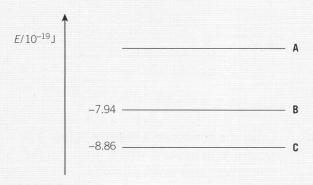
- b The wavelength of the violet light is 436 nm. Calculate the energy of a photon of this wavelength. (3 marks)
- The energy level diagram of Figure 2 is for the atoms emitting light in the lamp. The three electron transitions between the four levels **A**, **B**, **C**, and **D** shown produce the photons of red, green, and violet light. The energy *E* of an electron bound to an atom is negative. The ionisation level, not shown on the diagram, defines the zero of the vertical energy scale.

▲ Figure 2

Label the arrows on a copy of Figure 2 **R**, **G**, and **V** to indicate which results in the red, green, and violet photons.

(2 marks)

Jan 2013 G482


- **3 a** When a glowing gas discharge tube is viewed through a diffraction grating an emission line spectrum is observed.
 - (i) Explain what is meant by a *line* spectrum. (2 marks)
 - (ii) Describe how an absorption line spectrium differs from an emission line spectrum. (1 mark)

A fluorescent tube used for commercial lighting contains excited mercury atoms.
 Two bright lines in the visible spectrum of mercury are at wavelength 436 nm and 546 nm.

 $1 \, \text{nm} = 10^{-9} \, \text{m}$

Calculate

- (i) the energy of a photon of violet light of wavelength 436 nm (3 marks)
- (ii) the energy of a photon of green light of wavelength 546 nm. (1 mark)
- c Electron transitions between the three levels **A**, **B** and **C** in the energy level diagram for a mercury atom (Figure 3) produce photons at 436 nm and 546 nm. The energy *E* of an electron bound to an atom is negative. The ionisation level, not shown on the diagram, defines the zero of the vertical energy scale.

▲ Figure 3

- (i) Draw two arrows on a copy of Figure 3 to represent the transitions which give rise to these photons.

 Label each arrow with its emitted photon wavelength. (3 marks)
- (ii) Use your values for the energy of the photons from (b) to calculate the value of the energy level **A**. (2 marks)

d The light from a distant fluorescent tube is viewed through a diffraction grating aligned so that the tube and the lines on the grating are parallel. The light from the tube is incident as a parallel beam at right angles to the diffraction grating.

The line separation on the grating is 3.3×10^{-6} m.

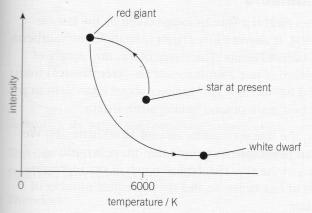
Calculate the angle to the straight through direction of the first order green (546 nm) image of the tube seen through the grating. (3 marks)

Jun 2010 G482

- 4 a State Wien's displacement law. (1 mark)
 - **b** An astronomer is analysing light from stars in a particular cluster. Table 1 summarises some of the key data for five stars in this cluster.

▼ Table 1

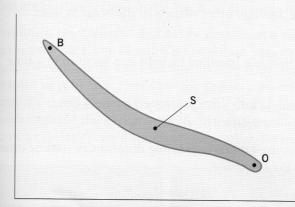
dentation	$\lambda_{\sf max}/{\sf nm}$	T/K	
	405	7200	,
ſ	424	6800	
	480	6000	
ľ	570	5100	
	644	4500	ė.


The wavelength of light at maximum intensity is λ_{\max} and the surface temperature of the star is T.

(i) Use the last column in Table 1 to validate Wien's displacement law.

(3 marks)

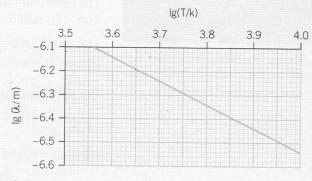
- (ii) Hence determine the surface temperature of a white dwarf for which λ_{max} is 138 nm. (3 marks)
- The luminosity of the white dwarf in (b)(ii) is 1.0×10^{25} W. Determine its radius. (3 marks)


- 5 a Describe briefly the sequence of events which occur in the formation of a star, such as our Sun, from interstellar dust and gas clouds. (4 marks)
 - **b** Figure 4 shows the evolution of a star similar to our Sun on a graph of intensity of emitted radiation against temperature.

▲ Figure 4

- (i) The final evolutionary stage of the star is a white dwarf. Describe some of the characteristics of a white dwarf.

 (2 marks)
- (ii) Explain why, in its evolution, the star is brightest when at its coolest. (2 marks)
- 6 Figure 5 shows an incomplete Hertzsprung-Russell (HR) diagram. The approximate position of the Sun is labelled as **S**.


▲ Figure 5

- a On a copy of Figure 5
 - (i) name the region of stars which is shaded (1 mark)

- (ii) carefully label the axes (2 marks)
- (iii) mark the regions occupied by red giants and white dwarfs. (2 marks)
- **b** Describe the evolution of a star that is much more massive than our Sun.

(5 marks)

- **c B** and **O** show positions of two stars. Explain which star is likely to live longer. (3 marks)
- 7 **a** (i) Define the luminosity of a star. (1 mark)
 - (ii) An astronomer has made measurements on a distant star in our galaxy. The star has a surface temperature of $(6000 \pm 200 \, \text{K})$ and a radius of $(8.3 \pm 0.2) \times 10^7 \, \text{m}$. Calculate the luminosity of the star and the absolute uncertainty in this value. (4 marks)
 - b Show how the luminosity *L* of a star is related to its intensity at a distance *r* from the star. (2 marks)
 - c Wien's law related the peak wavelength λ of electromagnetic waves emitted from a star and its surface temperature T in kelvin. Figure 6 shows a graph of $\lg (\lambda/m)$ against $\lg (T/K)$.

▲ Figure 7

- (i) Explain why the graph has a gradient of -1. (2 marks)
- (ii) Use Figure 6 to calculate the surface temperature of a star with $\lambda = 480 \, \text{nm}$. (3 marks)