1.

Waves - 4

Fig. 4.1 shows a thin taut wire held horizontally between supports 0.40 m apart.

Fig. 4.1

(a) When the wire is plucked at its centre a standing wave is formed and the wire vibrates in its fundamental mode.

(i) Explain how the standing wave is formed.

•••••	 •••••	•••••	
••••••	••••••	••••••	***************************************
	 		[2]

- (ii) On Fig. 4.1, draw the fundamental mode of vibration. Label the position of any nodes with the letter N and any antinodes with the letter A. [3]
- (iii) Determine the wavelength of this standing wave.

wavelength = m [2]

(b) (i) Describe how the wire could be made to vibrate with a frequency double that of the fundamental mode of vibration.

Fig. 4.2

2.

Fig. 3.2 shows, at a given instant, the shape of the stretched rope on which a stationary wave has been produced.

Fig. 3.2

(i)	Brie	fly explain how a stationary wave may be formed on the rope.
		[2]
(ii)	Stat	e the phase difference between the oscillations of the following pairs of icles on this stationary wave.
	1.	W and Y
	2.	Y and Z
		[2]
(iii)	For	a stationary wave, state what is meant by
	1.	a node
	2.	an antinode.
		[2]

(iv	r) Sta	te which of the particles on Fig. 3.2 are	
	1.	at a node	
	2.	at an antinode.	
			[2]
3. (a)	Fig. 6	6.1 shows a string stretched between two points A and B.	
		A	B ●
		Fig. 6.1	
	State	how you would set up a standing wave on the string.	
			[1]
(b)		standing wave vibrates in its fundamental mode i.e. the lowest frequing wave can be formed. Draw this standing wave on Fig. 6.2.	uency at which a
		A	В
(c)	Fig.	Fig. 6.2 6.3 shows the appearance of another standing wave formed on the	[1] e same string.
		A	В
		Fig. 6.3	
	The	distance between A and B is 1.8 m. Use Fig. 6.3 to calculate	
		the distance between neighbouring nodes	
	(1)	the distance between heighbouring nedes	

[1]

distance = m

wavelength =	m	[1]
wavelength -		r.1

(a) State one similarity and one difference between progressive waves and standing waves.

similarity	
difference	
	[2]

(b) A standing sound wave can be produced in an air column by blowing across the open end of a tube as shown in Fig. 5.1.

Fig. 5.1

The length of the tube is 0.36 m. The air column in the tube is sounding its lowes (fundamental) frequency note.	
(i) Add arrowed lines to the dots in Fig. 5.1 to show the direction of movement and relative amplitudes of the air at these positions. [3]	
(ii) Calculate the wavelength of the sound produced.	
wavelength = m [1	
(iii) The speed of sound in air is 330 m s ⁻¹ . Determine the frequency of this standing wave.	
frequency = Hz [2	
(iv) Determine the value of the lowest frequency of the note produced in a tube of this length but open at both ends. Show your reasoning.	

lowest frequency = Hz [3]