Waves 2 - Answers

)			B1
i)	f=	number of waves/ cycles/ vibrations per second (WTTE) passing a point OR produced by the wave source (WTTE)	B1 B1
i)	v =	distance travelled by the wave per second (WTTE) {do not accept $v = 'distance / time' OR v = f \lambda }$	B1 [4]
	{allo	w labelled diagrams used to define terms}	
	(hen	ce) distance travelled by first wave in 1 second = $f \times \lambda$	B1 B1 B1 [3]
	e.g.	v = d/t B1; where d = wavelength AND t = period AND	B1 B1
(i)	sn	nooth sinusoidal (generously judged) wave drawn nplitude correctly shown: 1.2 cm above and below time axis	B1 B1 B1 B1 [4]
(ii)	{a	llow 'vibrates/moves backwards and forwards' but not just 'source	B1 [1]
(iii)	λ	$= v/f = 340 \times 0.02$	C1 C1 A1 [3]
	(i) (ii) (iii)	(i) yaa (ii) Fr	 (do not accept 'length of one wave') i) f = number of waves/ cycles/ vibrations per second (WTTE) passing a point OR produced by the wave source (WTTE) ii) v = distance travelled by the wave per second (WTTE) {do not accept v = 'distance / time' OR v=fλ}. {allow labelled diagrams used to define terms} In 1 second f waves are produced each of length λ (WTTE) (hence) distance travelled by first wave in 1 second = f x λ (hence) v = f x λ {allow any other valid proof: e.g. v = d/t

2.

(a)	the spreading out of wavefront/waves {do not allow "spreading out of light/sound" "bending of light/waves"}	B1
	when they pass through a gap (OR pass an obstacle)	B1 [2]
(b)(i)	a straight strip (OR bar OR ruler)	B1
	is vibrated vertically OR up and down (in the water)	B1 [2]
(ii)	increase the frequency (of the waves/wave source)	
	OR use a shallower depth of water	B1 [1]
(c)(i)	semicircular wavefronts drawn	B1
	no change in λ ; i.e approx, same λ before & after gap	B1 [2]
(ii)	less diffraction occurs	B1
1)	wavefronts only slightly curved at edges (WTTE) (OR diagram) { full marks may be scored from a valid diagram}	B1 [2]
(iii)	Wavelength of light much smaller than most normal gaps	B1 [1]

(a)(i)	longitudinal = vibrations in same direction as wave (WTTE)	В1	
	transverse = vibrations at 90° to wave direction (WTTE)	В1	[2]
	{accept any word implying vibration e.g. oscillations / movements} {Allow 1 mark only for longitudinal = compressions and rarefaction AND transverse = crests and troughs} Allow 1 mark for imprecise comparison e.g. using the word 'travel'}		
(ii)	ANY THREE valid phenomena: B1 + B1 + B1; e.g. REFLECTION REFRACTION DIFFRACTION INTERFERENCE OR Superposition' OR 'Coherence' OR Standing wa Allow "both convey/transfer energy" but reject "both obey v=fλ" or both frequency, wavelength or velocity		
(iii)	POLARISATION	B1	
	relevant diagram: e.g. showing unpolarised radiation with vibrations in many planes OR plane polarised light blocked by a polariser at 90°	В1	
	explanation: e.g. statement/diagram showing polarised radiation		
	OR explanation of why polarisation is impossible for longitudinal waves	sB1	[3]
(b)(i)	each wave/cycle occupies 4 (squares or cm) {allow "wavelength" = 4cm}	C1	
	which represents 40 ms (OR period = 40 ms)	C1	
	frequency = (1/0.04) = 25 Hz	Α1	[3]
	{0.025Hz scores 2 marks if valid reasoning is offered above}		
(ii)	trace more spread out stated or implied	B1	
	idea of 'time shorter or speed of trace faster'	В1	
	only ¼ of a wave shown on the screen OR wave now 10 times longer (WTTE)	B1	[3]
(iii)	$v = f \lambda$	C1	
	λ = 330/25 {allow ecf from (i)}	C1	
	= 13.2 m	A1	[3]

(a)(i	 plane polarised light vibrates (allow travels) in one plane only {Look for reference to 'one plane' of oscillation and reject 'direction' 	B1 on'}	[1]
(ii) only transverse waves can be polarised (WTTE) sound waves are longitudinal OR "not transverse" (WTTE)	B1 B1	[2]
(b)	evidence of knowledge of full/max transmission - when polaroid is parallel to the light's plane of polarisation {or vibrations} no transmission when polaroid is at right angles to light's plane of polar {or vibrations} {Do not allow answers that merely describe the shape of the graph	B1	[2]
(c)	Any valid example: e.g. Radio waves, microwaves valid method of detection: e.g. aerial, microwave detector(!)	M1 A1	[2]
5.			
(a)	spreading out of waves (into a 'shadow region') (WTTE) when the waves meet an aperture or obstacle (WTTE)	M1 A1	[2]
(b)	narrow gap: almost full semicircles (no straight section) with gap at centre	В1	
	wide gap: virtually straight (must have some straight section) with gap at centre	B1	
	wavelength shown to be constant – generously judged by eye OR same λ labelled before & after aperture on either diagram	B1	[3]
6.			
(i)	correct sketch: same shape shifted to the right At least one full cycle must be drawn	[1]	
(ii)	arrows showing $X \uparrow, Z \downarrow$ B1 + B1 Award marks as shown irrespective of wave drawn by cand. but look to new positions of X and Z shown on the cand's new wave position.		
(iii)	wavelength = $2 \times 0.24 = 0.48 \text{m}$ B1 recall of v= $f\lambda$ C1 v = $3.6 \times 0.48 = 1.73 \text{ m s}^{-1}$ A1 Allow ecf for candidate's value of λ ; eg λ = 0.24m v = 0.865 m/s scores marks	[3]	
(iv)	1. wave speed NO CHANGE B1		
	2. wavelength is shortened C1 to a new value of 0.24 m OR is halved A1 {allow ecf for cand's value from (iii)}		

(a)	Longitudinal any valid example e.g. sound /ultra sound (accept 'P waves' but reject "Earthquake") Transverse any valid example	В1	
	e.g. light / microwaves etc./ emwaves / any emradiation (accept sea waves or ripple-tank waves but not "water waves")	В1	[2]
(b)(i)	frequency = number of waves/vibrations/oscillations/cycles per unit time {allow "per second"}	В1	[1]
(ii)	period = time taken for 1 complete cycle/wave/vibration/oscillation {allow 1/f, provided f has been correctly defined above}	B1	[1]
(c)(i)	4×10^{-5} m { not 4 or 4 $\times 10^{5}$ }	В1	[1]
(ii)	air particle vibrates (seen or implied in remainder of answer) in the same direction as the wave (WTTE) {allow left to right, backwards and forwards, longitudinally but NOT up an description of motion during any full cycle (allow ecf for transverse) {do not penalise reference to random thermal motion of air molecules}	B1 B1 d dov B1	wn} [3]