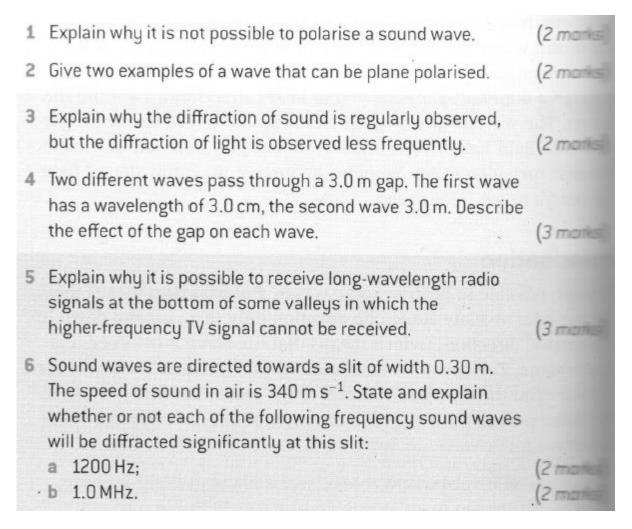

Waves - 1

Exercise A

1.



2.

Determine th	e phase difference	in degrees and radia	ins between the
following par	ticles in Figure 8 ($360^\circ = 2\pi \text{ radians})$	
a CD;	b CE;	c DF.	(3 marks

(Exercise B is on the next page)

Exercise B

Exercise C

1	State what happens to the intensity of a wave when the amplitude:			
	a increases by a factor of 3; b decreases by a factor of 4.	(2 marks)		
2	Calculate the intensity when a power of 400 W is received over			
	a cross-sectional area of 20 m ² .	(2 marks)		
3	Calculate the intensity 20 m from a source of light with a power			
	of 60 W.	(3 marks)		
4	Figure 4 shows the cone of light created when light passes			

 Figure 4 shows the cone of light created when light passes through a converging lens. Describe and explain how the intensity of light changes from A to B.
(4 marks)

- 5 A satellite in orbit around the Earth uses two solar panels for power. The intensity of sunlight received at the height of the satellite is 1.4 kW m⁻². The surface area of each solar panel is 8.0 m². Calculate the total energy transferred to the panel in a period of 2.0 hours. (4 marks)
- 6 At a distance of 15 m from a point source the intensity of a sound wave is 1.0×10^{-4} W m⁻².
 - a Show that the intensity 120 m from the source is approximately $1.6 \times 10^{-6} \text{ W m}^{-2}$. (3 marks)
 - b Discuss how the amplitude of the wave has changed.

Exercise D

- State why the polarisation of light supports the view that light is a transverse wave.
- Look at Figure 3. Explain why the maximum intensity occurs at 0°, 180°, and 360° and the minimum at 90° and 270°. (2 morks)
- 3 A student holds a polarising filter in front of a laptop screen and then rotates it. At a particular angle, the laptop screen appears to go dark.
 - a Suggest what you can deduce about the nature of light emitted from the laptop screen from the student's observation. (1 more
 - Explain how the laptop screen can be viewed once again though the filter. (3 marks)
- 4 A beam of polarised light is directed normally at a polarising filter of cross-sectional area $9.0 \times 10^{-4} \text{ m}^2$. The polarising filter is slowly rotated in a plane at right angles to the beam. The transmitted intensity *I* plotted against the angle θ resembles Figure 3, with a maximum intensity of 20 W m⁻².
 - a Calculate the power of light transmitted through the filter at $\theta = 0^{\circ}$.
 - b Use the graph to calculate the ratio: amplitude of light at 0°

amplitude of light at 60°

(2 marks)

(2 marks

(1 man