Transformations of Graphs

Exercise A

The following diagram shows a sketch of the curve with equation y = f(x). The points A(0, 2), B(1, 0), C(4, 4) and D(6, 0) lie on the curve.

Sketch the following graphs and give the coordinates of the points *A*, *B*, *C* and *D* after each transformation:

b
$$f(x) - 4$$

c
$$f(x+4)$$

$$\mathbf{d} f(2x)$$

f
$$f(\frac{1}{2}x)$$

$$\mathbf{g}^{\frac{1}{2}}\mathbf{f}(x)$$

e
$$3f(x)$$

h $f(-x)$

Sketch the following graphs and give the equations of any asymptotes and, for all graphs except **a**, give coordinates of intersections with the axes after each transformation.

b
$$f(x + 1)$$

$$\mathbf{c} \ 2\mathbf{f}(\mathbf{x})$$

d
$$f(x) - 2$$

e
$$f(2x)$$

f
$$f(\frac{1}{2}x)$$

$$\mathbf{g}^{\frac{1}{2}}\mathbf{f}(x)$$

$$\mathbf{h} - f(x)$$

Exercise B

1.

- (i) Sketch the curve $y = x^2(3-x)$ stating the coordinates of points of intersection with the axes. [3]
- (ii) The curve $y = x^2(3-x)$ is translated by 2 units in the positive direction parallel to the x-axis. State the equation of the curve after it has been translated. [2]
- (iii) Describe fully a transformation that transforms the curve $y = x^2(3-x)$ to $y = \frac{1}{2}x^2(3-x)$. [2]

2.

(i) Sketch the curve $y = -\frac{1}{x}$.

[2]

- (ii) The curve $y = -\frac{1}{x}$ is translated by 2 units parallel to the x-axis in the positive direction. State the equation of the transformed curve. [2]
- (iii) Describe a transformation that transforms the curve $y = -\frac{1}{x}$ to the curve $y = -\frac{1}{3x}$. [2]

3.

The curve y = f(x) passes through the point P with coordinates (2, 5).

- (i) State the coordinates of the point corresponding to P on the curve y = f(x) + 2. [1]
- (ii) State the coordinates of the point corresponding to P on the curve y = f(2x). [1]
- (iii) Describe the transformation that transforms the curve y = f(x) to the curve y = f(x+4). [2]

4.

(i) Sketch the curve
$$y = \frac{2}{x^2}$$
. [2]

- (ii) The curve $y = \frac{2}{x^2}$ is translated by 5 units in the negative x-direction. Find the equation of the curve after it has been translated. [2]
- (iii) Describe a transformation that transforms the curve $y = \frac{2}{x^2}$ to the curve $y = \frac{1}{x^2}$. [2]

5.

- (i) Sketch the curve y = (1+x)(2-x)(3+x), giving the coordinates of all points of intersection with the axes. [3]
- (ii) Describe the transformation that transforms the curve y = (1+x)(2-x)(3+x) to the curve y = (1-x)(2+x)(3-x). [2]

6.

- (i) Sketch the curve $y = \sqrt{x}$.
- (ii) Describe the transformation that transforms the curve $y = \sqrt{x}$ to the curve $y = \sqrt{x-4}$. [2]
- (iii) The curve $y = \sqrt{x}$ is stretched by a scale factor of 5 parallel to the x-axis. State the equation of the transformed curve. [2]

7.

The graph of y = f(x) for $-2 \le x \le 2$ is shown above.

- (i) Sketch the graph of y = f(-x) for $-2 \le x \le 2$.
- (ii) Sketch the graph of y = f(x) + 2 for $-2 \le x \le 2$.

- (i) Sketch the curve $y = -x^3$. [2]
- (ii) The curve $y = -x^3$ is translated by 3 units in the positive x-direction. Find the equation of the curve after it has been translated. [2]
- (iii) Describe a transformation that transforms the curve $y = -x^3$ to the curve $y = -5x^3$. [2]