Surds - Extension

- In triangle *ABC*, *B* is a right angle, $AB = 5 \sqrt{2}$ and $AC = 5 + \sqrt{2}$. Calculate and simplify $\cos \angle BAC$.
- 2. Solve the simultaneous equations $x\sqrt{5} + 2y = 3$ and x + y = 1, giving your answers in as simple a form as possible.
- A formula for the radius of the circle touching all three sides of a triangle is $r=\frac{2\Delta}{p}$, where Δ is the area of the triangle and p is its perimeter. Find, in as simple a form as possible, the radius of this circle for right-angled triangles having sides

- (a) 1 cm, 1 cm, $\sqrt{2}$, (b) 1 cm, $\sqrt{3}$ cm, 2 cm,
- (b) 1 cm, v 3 cm, 2 cm,
- In the diagram, angles ABC and ACD are right angles. Given that $AB = CD = 2\sqrt{6}$ cm and BC = 7 cm, show that the length of AD is between $4\sqrt{6}$ cm and $7\sqrt{2}$ cm.

- In the triangle PQR, Q is a right angle, $PQ = (6 2\sqrt{2})$ cm and $QR = (6 + 2\sqrt{2})$ cm.

 (a) Find the area of the triangle.

 (b) Show that the length of PR is $2\sqrt{22}$ cm.
- 6. It can be shown that $\tan 75^\circ = \frac{\sqrt{3}+1}{\sqrt{3}-1}$. Use a calculator to check this, and write an expression for $\tan 75^\circ$ in the form $a+b\sqrt{3}$, where a and b are rational numbers.

- 7. Solve the simultaneous equations 5x 3y = 41 and $(7\sqrt{2})x + (4\sqrt{2})y = 82$.
- An isosceles right-angled triangle has its two shorter sides of length a. Write down an
 expression for its perimeter in terms of a.

A length of rope 10 metres long is to be pegged out to form an isosceles right-angled triangle. Find, in as simple a form as possible, exact expressions for the lengths of the sides.