Deformation of Materials – 2 - Answers

ı. (a)(i)	stress = force / (cross sectional) area				
(ii)	strain = extension / (original) length				
(b) (i)	elastic returns to its original length/shape when the force/load is removed plastic does not regain its original length/size when the load is removed (allow ½ if removal of load is not specified but remainder is clear)				
(ii)	force/stress/strain/extension beyond which the material does not return to its original length (when the load is removed) (point beyondscores one only)				
(c)(i)	unit: Pa / N m ⁻²				
(ii)	Any seven from:				
	 Appropriate arrangement drawn Measure length Apply force and measure the extension Take a series of readings Measure the diameter Graph of stress against strain / force-extension graph Gradient for E / E = stress/strain / Gradient = EA/_L Point of detail e.g. second wire, micrometer used for diameter, Vernier for extension, very long wire 	B1 B1 B1 B1 B1 B1			
2.					
(a)	force / load if proportional to extension	B1			
(b)(i)	force constant = $100 / (40 \times 10^{-3})$ or equivalent = $2500 \text{ N m}^{-1} / \text{kg s}^{-2} (2.5 \text{ N mm}^{-1})$ unit penalty	C1 A1 -1			
(ii)	work done = area under graph / (force x extension) / 2 = (120 x 48 x 10 ⁻³) / 2 = 2.88 (2.9 to 2sf) (J)	C1 M1 A0			
(c)(i) k.e = $\frac{1}{2}$ mv ² v ² = (2.9 x 2) / 0.015 v = 19.7 (ms ⁻¹) (19.6 if 2.88 J is used)					

(ii)	(energy lost due to) friction in the gun air resistance (allow energy loss if type identified and place given)	B1 B1		
	(allow recoil of the gun) Total	[10]		
3.		B2		
(a)(i) (ii)	(stress / strain scores 1, with definitions of stress and strain scores 2) elastic limit: maximum force / load / stress / strain / extension which			
	can be applied to an object and it will regain its original length when the force / load stress is removed	B2		
(iii)	elastic returns to original length when load is removed	B1		
(,	plastic returns some deformation (when load is removed) penalise 'when load is removed' once only in (ii) and (iii)	B1		
(b)	a. brittle substance / glass / cast iron / perspex	B1		
(2)	b. ductile substance / metal / polythene	B1		
	c. polymeric substance / rubber / elastic	B 1		
	extends uniformly and then breaks for a	B1 B1		
	plastic behaviour for b elastic but energy stored in the material when load removed for c /	ы		
	elastic but not uniform	B1		
4.				
(a)	stress/ strain	· M1		
	with qualification e.g. elastic limit, within limit of proportionality tensile stress, tensile strain, Hooke's law obeyed	A1		
(b)(i)	$e/1 = 0.55 \times 10^{-3} / 1.8$	C1		
	$= 3.1 \times 10^{-4} (3.056)$			
(ii)	E = F x I / A x e			
	$F = 2 \times 10^{11} \times 3.1 \times 10^{-4} \times 1.2 \times 10^{-7}$ F = 7.33 (N)	C1 A1		
(c)(i)	E is half therefore e will be twice	C1		
(-/(/	e = 1.1 (mm) (or suitable calculation)	A1		
/ ::\	limit of proportionality not available / alastic limit is not available /			
(ii)	limit of proportionality not exceeded / elastic limit is not exceeded / temperature of wires the same / Hooke's law applies	B1		

5.				
(a)	load	load / force is proportional to extension		
(b)(i)	E	= (F x 1) / (e x A) / E = stress / strain = (gradient of graph x 1.7) / 1.8 x 10 ⁻⁷	C1 C1	
		(grad = $29.0/1.6 \times 10^{-3}$ or use of two points on line)	C1	
	= 1.	.71 x 10 ¹¹ (Pa)	A1	
(ii)	W	= area under line / W = ½ Fe	C1	
		$= \frac{1}{2} \times 29 \times 1.6 \times 10^{-3}$	C1	
		= 0.023 (J)	A1	
6				
6.				

7.

tensile stress: force/tension per unit cross-sectional area or $\frac{F}{A}$ (a) with F and A defined \checkmark tensile strain: extension per unit length or $\frac{e}{l}$ with e and l defined \checkmark the Young modulus: $\frac{\text{tensile stress}}{\text{tensile strain}}$ (3)

(b)(i)
$$E_S = \frac{F_S}{A} \frac{l}{e}$$
 and $E_B = \frac{F_B}{A} \frac{l}{e}$ \checkmark hence $\frac{E_S}{E_B} = \frac{F_S}{F_B}$

(ii)
$$\frac{E_S}{E_B} = 2$$
 \checkmark
 $\therefore F_S = 2 F_B \checkmark$

$$F_S + F_B = 15 \text{ N} \checkmark \text{ gives } F_S = 10 \text{ N}$$
 [or any alternative method]

B1

(iii)
$$\left(E = \frac{F}{A} \frac{l}{e} \text{ gives}\right) \quad e = \left(\frac{F}{A} \frac{l}{E}\right) = \frac{10 \times 1.5}{1.4 \times 10^{-6} \times 2.0 \times 10^{11}} \checkmark$$

= 5.36 × 10⁻⁵ m \checkmark (6)

Quality of Written Communication marks: Q2 (a) (ii) and Q2 (b) $\checkmark\checkmark$ (2)