Exercise A

	$g = 9.8 \mathrm{m s^{-2}}$
1	A steel spring has a spring constant of 25 N m ⁻¹ . Calculate:
	a the extension of the spring when the tension in it is equal to 10 N,
	b the tension in the spring when it is extended by 0.50 m from its unstretched length.
2	Two identical steel springs of length 250 mm are suspended vertically side-by-side from a fixed point. A 40 N weight is attached to the ends of the two springs. The length of each spring is then 350 mm. Calculate:
	a the tension in each spring,
	b the extension of each spring,
	c the spring constant of each spring.
	Repeat 2a and b for the two springs in 'series' and vertical.
4	An object of mass 0.150 kg is attached to the lower end of a vertical spring of unstretched length 300 mm, which is fixed at its upper end. With the object at rest, the length of the spring becomes 420 mm as a result. Calculate:
	a the spring constant,
	b the energy stored in the spring,
	c the weight that needs to be added to extend the spring to 600 mm.

Exercise B

1	Calculate the stress in a wire of diameter 0.25 mm when the tension in the wire is 50 N.	
2	A metal wire of diameter 0.23 mm and of unstretched length 1.405 m was suspended vertically from a fixed point. When a 40 N weight was suspended from the lower end of the wire, the wire stretched by an extension of 10.5 mm. Calculate the Young modulus of the wire material.	
3	A vertical steel wire of length 2.5 m and diameter 0.35 mm supports a weight of 90 N. Calculate:	
	a the stress in the wire,	
	b the extension of the wire. The Young modulus of steel	

Exercise C

The Young modulus for steel = 2.1×10^{11} Pa copper = 1.3×10^{11} Pa

- A vertical steel cable of diameter 24 mm and of length 18 m supports a weight of 1500 N attached to its lower end. Calculate a the tensile stress in the cable, b the extension of the cable, c the elastic energy stored in the cable, assuming its elastic limit has not been reached.
- 2 A vertical steel wire of diameter 0.28 mm and of length 2.0 m is fixed at its upper end, and has a weight of 15 N suspended from its lower end. Calculate a the extension of the wire, b the elastic energy stored in the wire.