1 Find the value of each of the following.

(i)
$$3^0$$
 [1]
(ii) $9^{\frac{3}{2}}$ [2]

(iii)
$$\left(\frac{4}{5}\right)^{-2}$$
 [2]

2 Find the coordinates of the point of intersection of the lines
$$2x + 3y = 12$$
 and $y = 7 - 3x$. [4]

3 (i) Solve the inequality
$$\frac{1-2x}{4} > 3$$
. [2]

(ii) Simplify
$$(5c^2d)^3 \times \frac{2c^3}{d^5}$$
. [2]

4 You are given that
$$a = \frac{3c+2a}{2c-5}$$
. Express *a* in terms of *c*. [4]

- 6 Find the binomial expansion of $(1 5x)^4$, expressing the terms as simply as possible. [4]
- 7 (i) Solve the equation $(x-2)^2 = 9$. [2]
 - (ii) Sketch the curve $y = (x 2)^2 9$, showing the coordinates of its intersections with the axes and its turning point. [3]

Skip question 8 as the remainder theorem is not required in the specification now.

8 You are given that $f(x) = x^3 + ax + c$ and that f(2) = 11. The remainder when f(x) is divided by (x + 1) is 8. Find the values of a and c. [5]

(Question 9 is on the next page.)

9 Fig. 9 shows the curves $y = \frac{1}{x+2}$ and $y = x^2 + 7x + 7$.

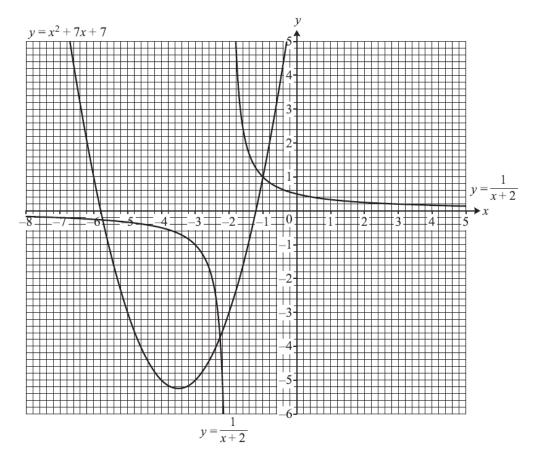
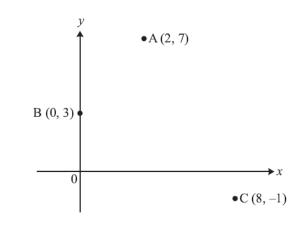



Fig. 9

(i)	Use	Fig. 9 to estimate graphically the roots of the equation $\frac{1}{x+2} = x^2 + 7x + 7$.	[2]
(ii)		w that the equation in part (i) may be simplified to $x^3 + 9x^2 + 21x + 13 = 0$. Find braically the exact roots of this equation.	[7]
(iii)	The curve $y = x^2 + 7x + 7$ is translated by $\begin{pmatrix} 3 \\ 0 \end{pmatrix}$.		
	(A)	Show graphically that the translated curve intersects the curve $y = \frac{1}{x+2}$ at only one po Estimate the coordinates of this point.	int. [2]
	(<i>B</i>)	Find the equation of the translated curve, simplifying your answer.	[2]

(Question 10 is on the next page.)

10 Fig. 10 shows a sketch of the points A (2, 7), B (0, 3) and C (8, -1).

Fig	10
rıy.	10

	(i)	Prove that angle ABC is 90°.	[3]
	(ii)	Find the equation of the circle which has AC as a diameter.	[4]
	(iii)	Find the equation of the tangent to this circle at A. Give your answer in the form $ay = bx + c$, where a and c are integers.	a, b [4]
11	(i)	Find the coordinates of the points of intersection of the curve $y = 2x^2 - 5x - 3$ with the axes.	[3]
	(ii)	Find the coordinates of the points of intersection of the curve $y = 2x^2 - 5x - 3$ and the line $y = x + 3$.	[4]
	(iii)	Find the set of values of k for which the line $y = x + k$ does not intersect the curve $y = 2x^2 - 5x - 3$.	[5]

END OF QUESTION PAPER