Question		Answer Marks Guidance			
1	(i)	$4x^2 - 12x + 9 - 2(9 - 6x + x^2)$ $2x^2 - 9$	M1 A1 [2]	Square to get at least one 3/4 term quadratic Fully correct www	ISW after correct answer
1	(ii)	$-6x^3 - 4x^3 - 10$	B1 B1 [2]	$-6x^3$ or $-4x^3$ soi www in these terms Condone $-10x^3$	Ignore other terms If only embedded in full expansion then award B1B 0
2		$\frac{\frac{3+\sqrt{20}}{3+\sqrt{5}} \times \frac{3-\sqrt{5}}{3-\sqrt{5}}}{\frac{-1+3\sqrt{5}}{9-5}}$	MI B1 A1	Attempt to rationalise the denominator – must attempt to multiply $\sqrt{20} = 2\sqrt{5}$ soi Either numerator or denominator correct and simplified to no more than two terms	Alternative: M1 Correct method to solve simultaneous equations formed from equating expression to $a\sqrt{5}+b$ B1 $\sqrt{20} = 2\sqrt{5}$ soi
		$-\frac{1}{4}+\frac{3}{4}\sqrt{5}$	A1 [4]	Fully correct and fully simplified. Allow $\frac{-1+3\sqrt{5}}{4}$, order reversed etc. Do not ISW if then multiplied by 4 etc.	Al Either a or b correct Al Both correct
3		$x^{2} + (3x + 4)^{2} = 34$ $10x^{2} + 24x - 18 = 0$ $5x^{2} + 12x - 9 = 0$ $(5x - 3)(x + 3) = 0$ $x = \frac{3}{5}, x = -3$	MI* Al MIdep* Al	Substitute for <i>x/y</i> or valid attempt to eliminate one of the variables Correct three term quadratic in solvable form Attempt to solve resulting three term quadratic Correct <i>x</i> values	If x eliminated: $10y^2 - 8y + 290 = 0$ $5y^2 - 4y + 145 = 0$ (5y - 29)(y + 5) = 0 Award A1 A0 for one pair correctly
		$y = \frac{29}{5}, y = -5$	A1 [5]	Correct y values	found from correct quadratic Spotted solutions: If M0 DM0 SC B1 $x = \frac{3}{5}, y = \frac{29}{5}$ www SC B1 $x = -3, y = -5$ www Must show on both line and curve (Can then get 5/5 if both found www and exactly two solutions justified)

Question	Answer	Marks	Guidance	
4	Let $y^{\frac{1}{4}} = x$	M1*	Use a substitution to obtain a quadratic or $\frac{1}{4}$	No marks if whole equation raised to fourth power etc.
	$2x^2 - 7x + 3 = 0$		factorise into two brackets each containing $y^{\overline{4}}$	No monto if stariate to formate
	(2x-1)(x-3) = 0	M1dep*	Correct method to solve resulting quadratic	No marks if straight to formula with no evidence of substitution at
	$x = \frac{1}{2}, x = 3$	Al	Both values correct	start and no raising to fourth power/fourth rooting at end.
	$y = \left(\frac{1}{2}\right)^4, y = 3^4$	M1dep*	Attempt to raise to the fourth power	No marks if $y^{\frac{1}{4}} = x$ and then
	$y = \frac{1}{16}, y = 81$			$2x - 7x^2 + 3 = 0.$
	10	A1 [5]	Correct final answers	Spotted solutions:
	<u>Alternative by rearrangement and squaring:</u> $2y^{\frac{1}{2}} - 7y^{\frac{1}{4}} + 3 = 0, 7y^{\frac{1}{4}} = 2y^{\frac{1}{2}} + 3$	M2*	Paarrange and square both sides trains	If M0 DM0 or M1 DM0 SC B1 $y = 81$ www
	$49y^{\frac{1}{2}} = 4y + 12y^{\frac{1}{2}} + 9 37y^{\frac{1}{2}} = 4y + 9$	MIZ	Rearrange and square both sides twice	SC B1 $y = 31$ www SC B1 $y = \frac{1}{16}$ www
	$16y^2 - 1297y + 81 = 0$	Al	Correct quadratic obtained	(Can then get 5/5 if both found
	(16y - 1)(y - 81) = 0	MIdep*	Correct method to solve resulting quadratic Correct final answers	www and exactly two solutions
	$y = \frac{1}{16}, y = 81$		Correct mar answers	justified)
	OR methods may be combined:			
	e.g. after $37y^{\frac{1}{2}} = 4y + 9$			
	$4y - 37y^{\frac{1}{2}} + 9 = 0$ $4x^2 - 37x + 9 = 0$	M1*	Rearrange, square both sides and substitute	
	(4x-1)(x-9) = 0 x = $\frac{1}{4}$, x = 9	Mldep* Al	Correct method to solve resulting quadratic	
	$y = \left(\frac{1}{4}\right)^2, \ y = 9^2$	Ml dep* Al [5]	Attempt to square Correct final answers	

Question		Answer	Marks	Guidance	
5	(i)	$(2^{-2})^3$ or $2^{15} \div 2^{21}$	B1	Valid attempt to simplify	Correct use of either index law $\left(\frac{1}{2}\right)^6$ oe is B1
		2-6	B1 [2]	Correct answer. Accept $p = -6$.	$\left(\frac{1}{2}\right)$ of is B1
5	(ii)	$5 \times (2^{2})^{\frac{2}{3}} + 3 \times (2^{4})^{\frac{1}{3}}$ = $5 \times 2^{\frac{4}{3}} + 3 \times 2^{\frac{4}{3}} or 10 \times 2^{\frac{1}{3}} + 6 \times 2^{\frac{1}{3}}$ = $8 \times 2^{\frac{4}{3}}$	MI B1	Attempts to express both terms or a combined term as a power of 2 Correctly obtains $2^{\frac{4}{3}}$ or $2^{\frac{1}{3}}$ for either term	e.g. Both $4 = 2^2$ and $16 = 2^4$ soi If M0 SC B1 for $8 \times 16^{\frac{1}{3}}$ or $8 \times 4^{\frac{2}{3}}$
		$=2^{\frac{13}{3}}$	A1 [3]	Correct final answer	
6	(i)	$\begin{aligned} &-2(x^2 - 6x - 2) \\ &= -2[(x - 3)^2 - 2 - 9)] \\ &= -2(x - 3)^2 + 22 \end{aligned}$	B1 B1 M1 A1 [4]	or $a = -2$ b = -3 $4 + 2b^2$ c = 22 If <i>a</i> , <i>b</i> and <i>c</i> found correctly, then ISW slips in format. If signs of all terms changed at start, can only score SC B1 for fully correct working to obtain $2(x-3)^2 - 22$ If done correctly and then signs changed at end, do not ISW, award B1B1M1A0	$-2(x - 3)^{2} - 22 \text{ B1 B1 M0 A0} -2(x - 3) + 22 4/4 (BOD) -2(x - 3x)^{2} + 22 B1 B0 M1 A0 -2(x^{2} - 3)^{2} + 22 B1 B0 M1 A0 -2(x + 3)^{2} + 22 B1 B0 M1 A0 -2x(x - 3)^{2} + 22 B0 B1 M1 A0 -2(x^{2} - 3) + 22 B1 B0 M1 A0$
6	(ii)	(3, 22)	Blft Blft [2]	Allow follow through "– their b " Allow follow through "their c "	May restart. Follow through marks are for their final answer to (i)

Q	iestion	Answer	Marks	Guidance	
7	(i)		B1 B1 B1 [3]	Negative cubic with a max and a min Cubic that meets y-axis at (0, 0) only Double root at (0,0) and single root at (3, 0) and no other roots	For first mark must clearly be a cubic – must not stop at or before <i>x</i> axis, do not allow straight line sections drawn with a ruler/tending to extra turning points etc. Must not be a finite plot.
7	(ii)	$y = (x-2)^{2}(5-x)$ or $y = 3(x-2)^{2} - (x-2)^{3}$	M1 A1 [2]	Translates curve by +2 or -2 parallel to the <i>x</i> -axis; must be consistent Fully correct, must have " $y =$ ". ISW expansions	e.g. for M1 $(x-2)^2(3-(x-2))$ but not $(x-2)^2(3-x-2)$
7	(iii)	Stretch Scale factor one-half parallel to the y-axis	B1 B1 [2]	Must use the word "stretch" Must have "factor" or "scale factor". For "parallel to the y axis" allow "vertically", "in the y direction".	Do not accept "in/on/across/up the y axis". Allow second B1 after "squash" etc. but not after "translate" etc.
8	(i)	$y_1 = 50, y_2 = 2(5+h)^2$ $\frac{(50+20h+2h^2)-50}{(5+h)-5}$ $20+2h$	B1 M1 A1 [3]	Finds y coordinates at 5 and $5 + h$ Correct method to find gradient of a line segment; at least 3/4 values correct Fully correct working to give answer AG	Need not be simplified
8	(ii)	e.g. "As h tends to zero, the gradient will be 20"	B1 [1]	Indicates understanding of limit See Appendix 2 for examples	e.g. refer to h tending to zero or substitute $h = 0$ into $20 + 2h$ to obtain gradient at A
8	(iii)	Gradient of normal = $-\frac{1}{20}$ $y - 50 = -\frac{1}{20}(x - 5), x = 0$ 50 ⁴ / ₄	B1 M1 A1 [3]	Gradient of line must be numerical negative reciprocal of their gradient at A through their A Correct coordinate in any form e.g. $\frac{201}{4}, \frac{1005}{20}$	Any correct method e.g. labelled diagram.

Qu	uestion	Answer	Marks	Guidance	
9	(i)	$x^{2} + (2 - 2k)x + 11 + k = 0$ $(2 - 2k)^{2} - 4(11 + k)$ $4k^{2} - 12k - 40 > 0$ $k^{2} - 3k - 10 > 0$ (k - 5)(k + 2) k < -2, k > 5 Centre of circle (4, 3)	М1* М1dep* А1 М1dep* А1 М1dep* А1 [7] В1	Attempt to rearrange to a three-term quadratic Uses $b^2 - 4ac$, involving k and not involving x Correct simplified inequality obtained www Correct method to find roots of 3-term quadratic 5 and -2 seen as roots $b^2 - 4ac > 0$ and chooses "outside region" Fully correct, strict inequalities.	Each Ms depend on the previous M -2 > k > 5 scores M1A0 Allow " $k < -2$ or $k > 5$ " for A1 Do not allow " $k < -2$ and $k > 5$ "
		$(x-4)^{2} - 16 + (y-3)^{2} - 9 - 20 = 0$ $r^{2} = 45$ $r = \sqrt{45}$	MI A1 [3]	$(x \pm 4)^2 - 4^2$ and $(y \pm 3)^2 - 3^2$ seen (or implied by correct answer) $\sqrt{45}$ or better www	ISW after $\sqrt{45}$
10	(ii)	At A, $y = 0$ so $x^2 - 8x - 20 = 0$ (x - 10)(x + 2) = 0 A = (10, 0) Gradient of radius = $\frac{3 - 0}{4 - 10} = -\frac{1}{2}$ Gradient of tangent = 2 y - 0 = 2(x - 10) y = 2x - 20	MI A1 MI B1 MI A1 [6]	Valid method to find A e.g. put $y = 0$ and attempt to solve quadratic (allow slips) or Pythagoras' theorem Correct answer found Attempts to find gradient of radius (3 out of 4 terms correct for their centre, their A) Equation of line through their A, any non-zero gradient Correct answer in any three-term form	Alterative for finding gradient: M1 Attempt at implicit differentiation as evidenced by $2y \frac{dy}{dx}$ term A1 $2x+2y \frac{dy}{dx}-8-6\frac{dy}{dx}=0$ and substitution of (10, 0) to obtain 2.
10	(iii)	A' = (-2, 6) y - 6 = 2(x + 2) y = 2x + 10	B1 M1 A1 [3]	Finds the opposite end of the diameter Line through their A' parallel to their line in (ii) Correct answer in any three-term form	Not through centre of circle
10	(iv)	$OC = \sqrt{3^2 + 4^2} = 5$ (0 <) r < $\sqrt{45} - 5$	M1 A1 [2]	Attempts to find the distance from O to their centre and subtract from their radius Correct inequality, condone ≤	ISW incorrect simplification

Questio	on	Answer	Marks	Guidance		
11	$y = \frac{dy}{dx} = \frac{dy}{dx}$ At s	$4x^{2} + ax^{-1} + 5$ = $8x - ax^{-2}$ tationary point, $8x - ax^{-2} = 0$ $8x^{3}$ oe en $a = 8x^{3}, y = 32$ = $4x^{2} + 8x^{2} + 5$	B1 M1 A1 M1 A1 M1 A1	ax^{-1} soi Attempt to differentiate – at least one non-zero term correct Fully correct Sets their derivative to 0 Obtains expression for <i>a</i> in terms of <i>x</i> , or <i>x</i> in terms of <i>a</i> www Substitutes their expression and 32 into equation of the curve to form single variable equation Obtains correct value for <i>x</i> . Allow $x = \sqrt{\frac{27}{12}}$.	$x = \frac{\sqrt[3]{a}}{2}$ oe, $a = 18x$ oe also fine or expression for a e.g. $a^{\frac{2}{3}} = 9$	
	a = 2 OR	27	A1 [8]	Ignore $-\frac{3}{2}$ given as well. Obtains correct value for <i>a</i> . Ignore -27 given as well.		
	$\frac{dy}{dx} =$ 32 = a = At s	$4x^{2} + ax^{-1} + 5$ = $8x - ax^{-2}$ = $4x^{2} + ax^{-1} + 5$ $27x - 4x^{3}$ tationary point, $8x - ax^{-2} = 0$ $-(27x - 4x^{3})x^{-2} = 0$	B1 M1 A1 M1 A1 M1	ax^{-1} soi Attempt to differentiate – at least one non-zero term correct Fully correct Substitutes 32 into equation of the curve to find expression for <i>a</i> Obtains expression for <i>a</i> in terms of <i>x</i> www Sets derivate to zero and forms single variable equation		
	$x = \frac{3}{2}$ a = 1	-	Al Al	Obtains correct value for <i>x</i> . Allow $x = \sqrt{\frac{27}{12}}$. Ignore $-\frac{3}{2}$ given as well. Obtains correct value for <i>a</i> . Ignore -27 given as well.		