[5]

Revision Paper 1

Answer all the questions.

- 1 (i) Simplify $(2x-3)^2-2(3-x)^2$. [2]
 - (ii) Find the coefficient of x^3 in the expansion of $(3x^2 3x + 4)(5 2x x^3)$. [2]
- 2 Express $\frac{3+\sqrt{20}}{3+\sqrt{5}}$ in the form $a+b\sqrt{5}$. [4]
- Solve the simultaneous equations $x^2 + y^2 = 34$, 3x y + 4 = 0.
- 4 Solve the equation $2y^{\frac{1}{2}} 7y^{\frac{1}{4}} + 3 = 0$. [5]
- 5 Express the following in the form 2^p .

(i)
$$(2^5 \div 2^7)^3$$

- (ii) $5 \times 4^{\frac{2}{3}} + 3 \times 16^{\frac{1}{3}}$
- 6 (i) Express $4 + 12x 2x^2$ in the form $a(x+b)^2 + c$. [4]
 - (ii) State the coordinates of the maximum point of the curve $y = 4 + 12x 2x^2$. [2]
- 7 (i) Sketch the curve $y = x^2(3-x)$ stating the coordinates of points of intersection with the axes. [3]
 - (ii) The curve $y = x^2(3-x)$ is translated by 2 units in the positive direction parallel to the x-axis. State the equation of the curve after it has been translated. [2]
 - (iii) Describe fully a transformation that transforms the curve $y = x^2(3-x)$ to $y = \frac{1}{2}x^2(3-x)$. [2]
- 8 A curve has equation $y = 2x^2$. The points A and B lie on the curve and have x-coordinates 5 and 5 + h respectively, where h > 0.
 - (i) Show that the gradient of the line AB is 20 + 2h.
 - (ii) Explain how the answer to part (i) relates to the gradient of the curve at A. [1]
 - (iii) The normal to the curve at A meets the y-axis at the point C. Find the y-coordinate of C. [3]
- 9 Find the set of values of k for which the equation $x^2 + 2x + 11 = k(2x 1)$ has two distinct real roots. [7]

(Question 10 is on the next page)

The diagram shows the circle with equation $x^2 + y^2 - 8x - 6y - 20 = 0$.

(i) Find the centre and radius of the circle.

[3]

The circle crosses the positive x-axis at the point A.

(ii) Find the equation of the tangent to the circle at A.

[6]

- (iii) A second tangent to the circle is parallel to the tangent at A. Find the equation of this second tangent. [3]
- (iv) Another circle has centre at the origin O and radius r. This circle lies wholly inside the first circle. Find the set of possible values of r.
- 11 The curve $y = 4x^2 + \frac{a}{x} + 5$ has a stationary point. Find the value of the positive constant a given that the y-coordinate of the stationary point is 32. [8]

END OF QUESTION PAPER