1.

In each of the following diagrams work out the values of x and y:

2.

In
$$\triangle ABC$$
, $AB = x$ cm, $BC = (4 - x)$ cm, $\angle BAC = y^{\circ}$ and $\angle BCA = 30^{\circ}$.
Given that $\sin y^{\circ} = \frac{1}{\sqrt{2}}$, show that $x = 4(\sqrt{2} - 1)$.

3.

Find x in each of the following diagrams:

4.

In $\triangle ABC$, shown right, AB = 4 cm, BC = (x + 2) cm and AC = 7 cm.

- **a** Explain how you know that 1 < x < 9.
- **b** Work out the value of x for the cases when

 $i \angle ABC = 60^{\circ}$ and

ii $\angle ABC = 45^{\circ}$, giving your answers to 3 significant figures.

-1-

5.

In the triangle shown right, $\cos \angle ABC = \frac{5}{8}$. Calculate the value of x.

6.

In $\triangle ABC$, $AB = \sqrt{2}$ cm, $BC = \sqrt{3}$ cm and $\angle BAC = 60^{\circ}$. Show that $\angle ACB = 45^{\circ}$ and find AC.

7.

In $\triangle ABC$, AB = (2 - x) cm, BC = (x + 1) cm and $\angle ABC = 120^{\circ}$:

- **a** Show that $AC^2 = x^2 x + 7$.
- **b** Find the value of x for which AC has a minimum value.

8.

Triangle ABC is such that $BC = 5\sqrt{2}$ cm, $\angle ABC = 30^{\circ}$ and $\angle BAC = \theta$, where $\sin \theta = \frac{\sqrt{5}}{2}$. Work out the length of AC, giving your answer in the form $a\sqrt{b}$, where a and b are integers.

9.

The perimeter of $\triangle ABC = 15$ cm. Given that AB = 7 cm and $\angle BAC = 60^{\circ}$, find the lengths of AC and BC.

10.

In each of the figures below calculate the total area:

