Answers - Electricity - 1

1.			
(a)(i) (ii)	Ammeter Voltmeter		B1 B1
(b)	/: current △t: time (interval / duration))	B1 B1
(c)(i) (ii) (iii)	$I = 7.5 \times 10^3 / 1500$ I = 5.0 (A) V = P / I (allow other variants) $V = 1.2 \times 10^3 / 5.0$ (possible e.c.f) $V = 240 \text{ (V)}$ (-1 for missing k or 10^3 fac $E = 1.2 \times 10^3 \times 1500$ $E = 1.80 \times 10^6 \text{ (J)}$ (-1 for missing k or 10^3 fac penalise once only in (ii) &		C1 A1 C1 C1 A1 C1
(iv)	units = 1500/3600 x 1.2 = cost = 0.5 x 6.4 = 3.2 (p)	0.5 units = $1.8 \times 10^6 / 3.6 \times 10^6 = 0.5$ (possible (e.c.f if (iii) used)	C1 A1
2.			
(a)(i)	Coulomb / C	(Allow Ampere second / As)	
(ii)	Voltmeter		B1
(b)(i)	P = VI V = 36 / 3.0 p.d. = 12 (V)	(Allow other variant)	
(ii)	E = 36×600 energy = $2.1(6) \times 10^4$ (J) $\approx 2.2 \times 10^4$ (J)		C1 A1
(iii)	$\Delta Q = I\Delta t / Q = It$ (Allow other variant) $\Delta Q = 3.0 \times 600$ charge = 1.8 x 10 ³ (C)		C1 C1 A1
(iv)	N = $1.8 \times 10^3 / 1.6 \times 10^{-19}$ (Possible ECF) number = $1.1(3) \times 10^{22} \approx 1.1 \times 10^{22}$		C1 A1

C1 Α1

(a)	R = V / I symbols defined: R = resistance, V = p.d. / voltage and I = current (V = IR with all symbols defined scores 1/ 2) (R = p.d. / voltage per unit current scores 2/2) (R = p.d. / voltage per unit amp / A scores 1/ 2)					
(b)	Resistance decreases as temperature increases. Correct <u>curve</u> with <i>R</i> decreasing as temperature increases.					
(c)(i)	Resistance increases (as V increases) Temperature increases / atoms vibrate more / more electron collisions (with atoms) 1. $P = 24 \times 2$ $P = 48 \text{ (W)}$ 2. $V = 12 \text{ (V)}$ when current is 2.0 (A) (Allow $V = 11.0 \text{ V}$ from graph) $R = 12 / 2.0 = 6.0 (\Omega)$ 3. $R_T = 6.0 + 5.0 = 11.0 (\Omega)$ (possible e.c.f)					
	4. $V_L = 11.0 \times 2.0 = 22 \text{ (V)}$ $R_{circuit} = 48 / 2.0^2 = 12 \text{ (}\Omega\text{)}$ $r = (24-22) / 2.0 = 1.0 \text{ (}\Omega\text{)}$ $r = 12.0 - 11.0 = 1.0 \text{ (}\Omega\text{)}$	C1 A1				
4.						
(a)	ho = RA / L Symbols defined: ho = resistivity, A = cross-sectional area, R = resistance and L = length (R = $ ho$ L/A with all symbols defined scores 1/2)					
(b)(i)	$A = \rho L / R$ $A = 4.3 \times 10^{-6} \times 1.2 \times 10^{-2} / 5.0$ (-1 for using L as 2.0 mm) $A = 1.0(3) \times 10^{-8}$ (m ²) $t = 1.0(3) \times 10^{-8} / 2.0 \times 10^{-3}$	C1 C1 A1				
(11)	$t = 5.1(6) \times 10^{-6} \text{ (m)}$ (possible e.c.f)	B1				
5.						
(a)(i)	R = 50Ω I = $3.0 / 50$ current = $0.06 (A)$	C1 C1 A1				
(ii)	$P = VI / V^2 / R / I^2 R$ power = 3.0 x 0.06 power = 0.18 (W) (Possible ECF)	C1 A1				
(b)(i)	'Constant' temperature implied (wtte) (Do not allow reference to Ohm's law or to 'heating')					

(ii)	1. 2.	40 (Ω) A = $π × (1.0 × 10-5)2 = 3.1(4) × 10-10 (R = ρ L/A 40 = 5.4 × 10-8 × L / 3.1 (4) × 10-10 L = 0.23(3) (m) ≈ 0.23 (m) Length is 9too) long, therefore must$	(Allow other variant) (Possible ECF)	B1 B1 C1 C1 A1 B1

6.

(i)
$$R = 1.28 / 0.80$$
 C1 resistance = 1.6(0) (Ω)

(ii)
$$R = R_1 + R_2 / 1.60 = r + 1.10 / r = (1.28 - 0.8 \times 1.1) / 0.8$$
 C1 $r = 0.5(0) (\Omega) \approx 0.5 (\Omega)$ (Possible ECF) A1

7.

(a)
$$\rho$$
 = RA / L (Allow R = ρ I/A) M1
Symbols defined: (ρ = resistivity) A = $\underline{\text{cross-sectional}}$ area, R = resistance and L = length A1
(resistivity = product of resistance and cross sectional area per (unit) length scores 2/2) (resistivity = product of resistance and cross sectional area per (unit) metre scores 1/2)

(b)(i)
$$h = 1.2 \times 10^{-5} / 3.0 \times 10^{-4}$$
 C1
 $h = 4.0 \times 10^{-2}$ (m) A0

(ii)
$$R = \rho I/A$$

 $R = 6.9 \times 10^{-2} \times 4.0 \times 10^{-2} / 3.0 \times 10^{-4}$ (-1 for 10^n error) C1
 $R = 9.2(0) (\Omega)$ A1
 $(R = 920 (\Omega) \text{ scores } 1/2)$

(c) Resistance decreases M1 by a factor of four because the length is halved (and area is doubled) A1 (Numerical approach with R =
$$2.3 (\Omega)$$
 scores $2/2$)

(a)(i)		Parallel	В1
(ii)		$R = R_1R_2/R_1 + R_2$ / $1/R_T = 1/R_1 + 1/R_2$ $R = 1.5 \times 1.0 / (1.5 + 1.0)$ / $R = 1/1.67$ / $1/R = 1.67$ $R = 0.6 (\Omega)$	C1 C1 A0
(b)(i)		e.m.f. is the (total) energy (gained) / work done per (unit) charge Energy transformed into electrical / gained by charges OR	B1 B1
		E = W/Q (E = e.m.f) W = energy gained / converted to electrical and Q = charge	M1 A1
(ii)		The chemicals (within the cell)	В1
(iii)		$R = R_1 + R_2$ / $R = 0.8 + 0.6$ C1 $R = 1.4 (\Omega)$	A 1
(iv)		I = 1.5 / 1.4 I = 1.0(7) (A) (Possible e.c.f)	C1 A1
(v)	1.	$P = VI / I^2R / V^2/R$	B1
	2.	P_{int} = 1.0(7) ² × 0.8 = (0.916 W) / P_{ext} = 1.0(7) ² × 0.6 = (0.687 W) ratio = 0.8 / 0.6 / ratio = 0.916/0.687 ratio = 1.3(3) (ratio = 0.6/0.8 = 0.75 scores 2/3) (ratio = 0.571, when R = 1.4Ω is used instead of 0.6Ω, scores 2/3) (ratio = (1.07 × 0.8) / (1.07 × 0.6) scores 0/3)	C1 C1 A1