Exercise A

1. Sketch a possible graph for the gradient of each of the following functions.

2. *F* is the point with co-ordinates (3, 9) on the curve with equation y = x². **a** Find the gradients of the chords joining the point *F* to the points with coordinates: **i** (4, 16) **ii** (3.5, 12.25) **iii** (3.1, 9.61) **iv** (3.01, 9.0601) **v** (3 + h, (3 + h)²) **b** What do you deduce about the gradient of the tangent at the point (3, 9)?

3.

- *G* is the point with coordinates (4, 16) on the curve with equation $y = x^2$.
- **a** Find the gradients of the chords joining the point *G* to the points with coordinates:
 - i (5,25) ii (4.5,20.25) iii (4.1,16.81)
 - **iv** (4.01, 16.0801) **v** $(4 + h, (4 + h)^2)$
- **b** What do you deduce about the gradient of the tangent at the point (4, 16)?
- 4. Use differentiation from first principles to find the gradient of each of the following functions at the given points.
 - (a) $y = x^2 + 3x$ at the point (2, 10)
 - (b) $y = 2x^2 5$ at the point (3, 13)
 - (c) $y = x^3$ at the point (-1, -1)
 - (d) $y = x^3 2x^2 + 5$ at the point (0, 5)
- 5. Find the derivatives of the following functions using differentiation from first principles.
 - (a) $y = x^2 + 3x$
 - (b) $y = 3x^2 4x + 5$
 - (c) $y = x^4$
 - (d) $y = 5x^3$
 - (e) $y = x^3 + 2x^2 + 4x 6$

Exercise B

Differentiate each of the following with respect to *x*.

1 x ⁷	2 x^8	3 x ⁴	
4 $x^{\frac{1}{3}}$	5 $x^{\frac{1}{4}}$	6 $\sqrt[3]{x}$	
7 x^{-3}	8 x ⁻⁴	9 $\frac{1}{x^2}$	
10 $\frac{1}{x^5}$	11 $\frac{1}{\sqrt[3]{x}}$	12 $\frac{1}{\sqrt{x}}$	
13 $\frac{x^2}{x^4}$	14 $\frac{x^3}{x^2}$	15 $\frac{x^6}{x^3}$	
16 $x^3 \times x^6$	17 $x^2 \times x^3$	$18 x \times x^2$	

Exercise C

1 Find $\frac{dy}{dx}$ when y equal	als:	
a $2x^2 - 6x + 3$	6	b $\frac{1}{2}x^2 + 12x$
c $4x^2 - 6$		d $8x^2 + 7x + 12$
e $5 + 4x - 5x^2$		

2 Find the gradient of the curve whose equation is

a $y = 3x^2$ at the point (2, 12)	b $y = x^2 + 4x$ at the point (1, 5)
c $y = 2x^2 - x - 1$ at the point (2, 5)	d $y = \frac{1}{2}x^2 + \frac{3}{2}x$ at the point (1, 2)
e $y = 3 - x^2$ at the point (1, 2)	f $y = 4 - 2x^2$ at the point (-1, 2)

- **3** Find the *y*-coordinate and the value of the gradient at the point P with *x*-coordinate 1 on the curve with equation $y = 3 + 2x x^2$.
- **4** Find the coordinates of the point on the curve with equation $y = x^2 + 5x 4$ where the gradient is 3.
- 5 Find the gradients of the curve $y = x^2 5x + 10$ at the points *A* and *B* where the curve meets the line y = 4.

6 Find the gradients of the curve $y = 2x^2$ at the points C and D where the curve meets the line y = x + 3.

c $2x^{-\frac{1}{2}}$

Exercise D

1 Use standard results to differentiate: **a** $x^4 + x^{-1}$ **b** $\frac{1}{2}x^{-2}$

.

2 Find the gradient of the curve with equation y = f(x) at the point *A* where: **a** $f(x) = x^3 - 3x + 2$ and *A* is at (-1, 4)**b** $f(x) = 3x^2 + 2x^{-1}$ and *A* is at (2, 13)

3 Find the point or points on the curve with equation y = f(x), where the gradient is zero: a $f(x) = x^2 - 5x$ b $f(x) = x^3 - 9x^2 + 24x - 20$ c $f(x) = x^{\frac{3}{2}} - 6x + 1$ d $f(x) = x^{-1} + 4x$

Exercise E

 Use standard results to differentiate: **b** $\frac{3}{r^2}$ c $\frac{1}{3r^3}$ a $2\sqrt{x}$ **f** $\sqrt[3]{x} + \frac{1}{2r}$ $e \frac{2}{x^3} + \sqrt{x}$ **d** $\frac{1}{3}x^3(x-2)$ i $\frac{2x^3+3x}{\sqrt{x}}$ **g** $\frac{2x+3}{x}$ **h** $\frac{3x^2-6}{r}$ 1 $(3x-2)\left(4x+\frac{1}{x}\right)$ $x(x^2 - x + 2)$ **k** $3x^2(x^2 + 2x)$ Find the gradient of the curve with equation y = f(x) at the point A where: 2 **b** $f(x) = \frac{2x-6}{r^2}$ and *A* is at (3, 0) **a** f(x) = x(x + 1) and A is at (0, 0) **c** $f(x) = \frac{1}{\sqrt{x}}$ and *A* is at $(\frac{1}{4}, 2)$ **d** $f(x) = 3x - \frac{4}{r^2}$ and A is at (2, 5)

Exercise F

Find
$$\frac{dy}{dx}$$
 and $\frac{d^2y}{dx^2}$ when y equals:
1 $12x^2 + 3x + 8$
2 $15x + 6 + \frac{3}{x}$
3 $9\sqrt{x} - \frac{3}{x^2}$
4 $(5x + 4)(3x - 2)$
5 $\frac{3x + 8}{x^2}$

Exercise G

1 Find
$$\frac{d\theta}{dt}$$
 where $\theta = t^2 - 3t$
2 Find $\frac{dA}{dr}$ where $A = 2\pi r$
3 Find $\frac{dr}{dt}$ where $r = \frac{12}{t}$
4 Find $\frac{dv}{dt}$ where $v = 9.8t + 6$
5 Find $\frac{dR}{dr}$ where $R = r + \frac{5}{r}$
6 Find $\frac{dx}{dt}$ where $x = 3 - 12t + 4t^2$
7 Find $\frac{dA}{dx}$ where $A = x(10 - x)$

Exercise H

1 Find the equation of the tangent to the curve:

a
$$y = x^2 - 7x + 10$$
 at the point (2, 0)

c
$$y = 4\sqrt{x}$$
 at the point (9, 12)

e $y = 2x^3 + 6x + 10$ at the point (-1, 2)

b
$$y = x + \frac{1}{x}$$
 at the point $(2, 2\frac{1}{2})$
d $y = \frac{2x - 1}{x}$ at the point $(1, 1)$
f $y = x^2 + \frac{-7}{x^2}$ at the point $(1, -6)$

2 Find the equation of the normal to the curves: **a** $y = x^2 - 5x$ at the point (6, 6)

b
$$y = x^2 - \frac{8}{\sqrt{x}}$$
 at the point (4, 12)

- **3** Find the coordinates of the point where the tangent to the curve $y = x^2 + 1$ at the point (2, 5) meets the normal to the same curve at the point (1, 2).
- **4** Find the equations of the normals to the curve $y = x + x^3$ at the points (0, 0) and (1, 2), and find the coordinates of the point where these normals meet.
- 5 For $f(x) = 12 4x + 2x^2$, find an equation of the tangent and normal at the point where x = -1 on the curve with equation y = f(x).

NB Tutors Ltd, Unit 79, Capital Business Centre, 22 Carlton Road, South Croydon, CR2 OBS

Ē