Pure Mathematics

Answers - Coordinate Geometry - Circles - 2

1.

(a)
$$(\frac{5+13}{2}, \frac{-1+11}{2}), = \underline{(9,5)}$$
 M1, A1 (2)
(b) $r^2 = (9-5)^2 + (5-1)^2 (=52)$ or $r^2 = (13-9)^2 + (11-5)^2 (=52)$ (or equiv.) M1 M1 A1ft A1 (4)

2.

(a) Centre
$$(5, 0)$$
 (or $x = 5, y = 0$)

(b) $(x \pm a)^2 \pm b \pm 9 + (y \pm c)^2 = 0 \Rightarrow r^2 = \dots$ or $r = \dots$, Radius = 4

(c) $(1, 0)$, $(9, 0)$ Allow just $x = 1$, $x = 9$

B1 B1 (2)

M1, A1 (2)

B1ft, B1ft (2)

B1

 $y = -\frac{2}{7}(x - 5)$

M1 A1ft (3)

3.

(a) Gradient of
$$PQ$$
 is $-\frac{1}{3}$ B1
 $y-2=-\frac{1}{3}(x-2)$ $(3y+x=8)$ M1 A1 (3)
(b) $y=1$: $3+x=8$ $x=5$ (*) B1 (1)
(c) $("5"-2)^2+(1-2)^2$ M: Attempt PQ^2 or PQ M1 A1 $(x-5)^2+(y-1)^2=10$ M: $(x\pm a)^2+(y\pm b)^2=k$ M1 A1 (4)

4.

i	grad AC = $\frac{7-3}{3-1}$ or 4/2 o.e.[= 2]	M1	not from using – ½	
	$3-1$ so grad AT = $-\frac{1}{2}$	M1	or ft their grad AC [for use of $m_1m_2 = -1$]	
	eqn of AT is $y - 7 = -\frac{1}{2}(x - 3)$	M1	or subst (3, 7) in $y = -\frac{1}{2}x + c$ or in $2y + x = 17$; allow ft from their grad of AT, except 2 (may be AC not AT)	
	one correct constructive step towards $x + 2y = 17$ [ans given]	M1	or working back from given line to $y = -\frac{1}{2}x + 8.5$ o.e.	4
ii	x + 2(2x - 9) = 17	M1	attempt at subst for x or y or elimination	
	5x - 18 = 17 or 5x = 35 o.e. x = 7 and y = 5 [so (7, 5)]	A1 B1	allow $2.5x = 17.5$ etc graphically: allow M2 for both lines correct or showing $(7, 5)$ fits both lines	3
iii	$(x-1)^2 + (2x-12)^2 = 20$ $5x^2 - 50x + 125[=0]$ $(x-5)^2 = 0$ equal roots so tangent	M1 M1 A1 B1	subst $2x - 9$ for y [oe for x] rearranging to 0; condone one error showing 5 is root and only root explicit statement of condition needed (may be obtained earlier in part) or showing line is perp. to radius at point of contact	
	(5, 1)	B1	condone $x = 5, y = 1$	
	<u>or</u>			
	$y-3 = -\frac{1}{2}(x-1)$ o.e. seen	M1	or if $y = 2x - 9$ is tgt then line through C with gradient $-\frac{1}{2}$ is radius	
	subst or elim. with $y = 2x - 9$ x = 5 (5,1)	M1 A1 B1	72 10 100100	
	showing (5, 1) on circle	B1	or showing distance between $(1, 3)$ and $(5, 1) = \sqrt{20}$	5

5.

(a)	$(x-5)^2 + (y-6)^2$	M1 A1		one term correct LHS correct with perhaps extra constant
	$(x-5)^2 + (y+6)^2 = 20$	A1	3	terms equation completely correct
(b) (i)	C(5,-6)	B1 √	1	correct or ft their (a)
(ii)	$ (radius =) \sqrt{20} $ $ = 2\sqrt{5} $	M1 A1	2	correct or ft 'their' \sqrt{k} provided RHS > 0 must see $\sqrt{20}$ first
(c)	Grad $AC = \frac{-62}{5 - 3}$ (= -2)	M1		correct unsimplified, ft their coords of C
	Grad of tangent $=\frac{1}{2}$	B1 √		ft their -1/ grad AC
	Equation of tangent is $(y2) = "their \frac{1}{2}" (x-3)$	M1		clear attempt at tangent not normal through $(3, -2)$
	$y + 2 = \frac{1}{2}(x - 3)$	A1		correct equation in any form but $y2$ must be simplified to $y+2$
	x - 2y = 7	A1 cso	5	
(d)	$AB^2 + (their \ r)^2 = 6^2$	M1		Pythagoras used with 6 as hypotenuse
	$d^2 + 20 = 36$ or $(AB^2) = 36 - 20$	A1		values correct with $(2\sqrt{5})^2 = 20 \text{ PI}$
	$AB^2 = 16$ Hence $AB = 4$	A1cso	3	notation all correct

6.

(ii) Gradient DE =
$$-\frac{1}{2}$$

B1 1 $-\frac{1}{2}$ (any working seen must be correct)

(iii) $y-3=-\frac{1}{2}(x-2)$

M1 Correct equation for straight line, any gradient, passing through F

A1 $y-3=-\frac{1}{2}(x-2)$ aef

$$x+2y-8=0$$

A1 3 $x+2y-8=0$
(this form but can have fractional coefficients e.g. $\frac{1}{2}x+y-4=0$

B1 Correct supporting working must be seen Attempt to show that product of their gradients = -1 o.e.

(iv)	$DF = \sqrt{4^2 + 3^2} = 5$	M1	$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \text{ used}$
		A1 2	5

Mid-point of DF <u>or</u> centre of circle is $(0,1\frac{1}{2})$

Radius = 2.5

$$x^{2} + (y - \left(\frac{3}{2}\right)^{2}) = \left(\frac{5}{2}\right)^{2}$$
$$x^{2} + y^{2} - 3y + \frac{9}{4} = \frac{25}{4}$$
$$x^{2} + y^{2} - 3y - 4 = 0$$

Justification that DF is a diameter

B1 Mid-point of DF <u>or</u> centre of circle is $(0,1\frac{1}{2})$

B1 Radius = 2.5

$$x^2 + (y - \left(\frac{3}{2}\right)^2) = \left(\frac{5}{2}\right)^2$$

B1 5
$$x^2 + y^2 - 3y - 4 = 0$$
 obtained correctly with at least one line of intermediate working.
SR For working that only shows $x^2 + y^2 - 3y - 4 = 0$ is

equation for a circle with centre $(0,1\frac{1}{2})$ B1

radius 2.5 B1