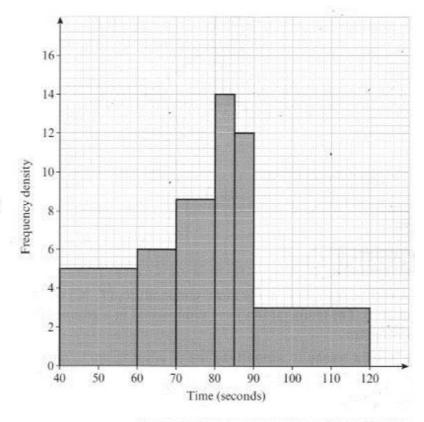
Date:

1.

The data shows the mass, in pounds, of 50 adult puffer fish.

- a Draw a histogram for this data.
- b On the same set of axes, draw a frequency polygon.

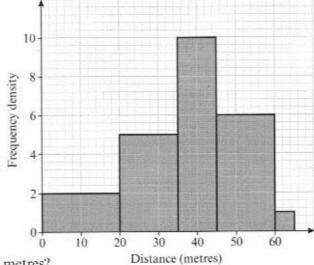
Mass, m (pounds)	Frequency	
$10 \le m < 15$	4	
$15 \le m < 20$	12	
$20 \le m < 25$	23	
$25 \le m < 30$	8	
$30 \le m < 35$	3	


2.

Some students take part in an obstacle race. The time it took each student to complete the race was noted. The results are shown in the histogram.

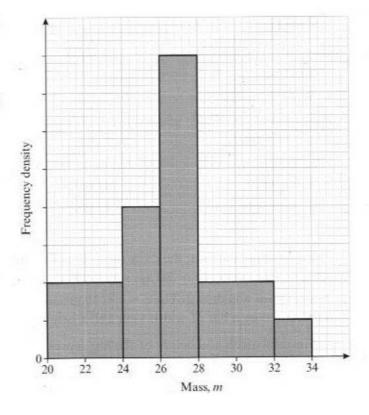
a Give a reason to justify the use of a histogram to represent this data.

The number of students who took between 60 and 70 seconds is 90.


- b Find the number of students who took between 40 and 60 seconds.
- c Find the number of students who took 80 seconds or less.
- d Calculate the total number of students who took part in the race.

Watch out Frequency density × class width is always **proportional** to frequency in a histogram, but not necessarily **equal** to frequency.

A Fun Day committee at a local sports centre organised a throwing the cricket ball competition. The distance thrown by every competitor was recorded. The histogram shows the data. The number of competitors who threw less than 20 m was 40.


- a Why is a histogram a suitable diagram to represent this data?
- b How many people entered the competition?
- c Estimate how many people threw between 30 and 40 metres.
- d How many people threw between 45 and 65 metres?
- e Estimate how many people threw less than 25 metres.

4.

A farmer found the masses of a random sample of lambs. The masses were summarised in a grouped frequency table and represented by a histogram. The frequency for the class $28 \le m < 32$ was 32.

- a Show that 25 small squares on the histogram represents 8 lambs.
- **b** Find the frequency of the $24 \le m < 26$ class.
- e How many lambs did the farmer weigh in total?
- **d** Estimate the number of lambs that had masses between 25 and 29 kg.

The histogram in Figure 1 shows the time taken, to the nearest minute, for 140 runners to complete a fun run.

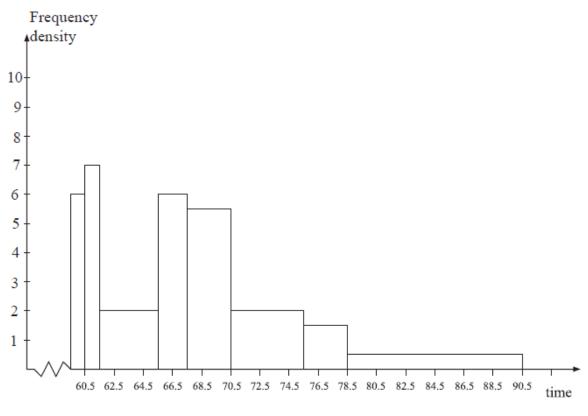


Figure 1

Use the histogram to calculate the number of runners who took between 78.5 and 90.5 minutes to complete the fun run.

(5)

6.

The variable y was measured to the nearest whole number. 60 observations were taken and are recorded in the table below.

у	10-12	13-14	15-17	18-25
Frequency	6	24	18	12

a Write down the class boundaries for the 13-14 class.

(1 mark)

A histogram was drawn and the bar representing the 13–14 class had a width of 4 cm and a height of 6 cm.

Problem-solving

For the bar representing the 15-17 class, find:

b i the width

(1 mark)

ii the height.

(2 marks)

Remember that area is proportional to frequency.

7.

A teacher selects a random sample of 56 students and records, to the nearest hour, the time spent watching television in a particular week.

Hours	1-10	11-20	21-25	26-30	31-40	41-59
Frequency	6	15	11	13	8	3
Mid-point	5.5	15.5		28		50

(a) Find the mid-points of the 21-25 hour and 31-40 hour groups.

(2)

A histogram was drawn to represent these data. The $11-20\,$ group was represented by a bar of width $4\,\mathrm{cm}$ and height $6\,\mathrm{cm}$.

(b) Find the width and height of the 26-30 group.

(3)

(c) Estimate the mean and standard deviation of the time spent watching television by these students.

(5)

(d) Use linear interpolation to estimate the median length of time spent watching television by these students.

(2)