For a list of numbers	For frequency distributions
Mean, $\bar{x} = \frac{\sum x}{n}$	Mean, $\bar{x} = \frac{\sum fx}{\sum f}$
(Not given in the formula booklet)	(Not given in the formula booklet)
$S_{xx} = \sum (x_i - \bar{x})^2$ = $\sum x_i^2 - \frac{(\sum x_i)^2}{n}$ = $\sum x_i^2 - n\bar{x}^2$	$S_{xx} = \sum f x_i^2 - \frac{(\sum f x_i)^2}{n}$ $= \sum f x_i^2 - n \bar{x}^2$
Variance, $\sigma^2 = \frac{\sum (x - \bar{x})^2}{n}$	Variance, $\sigma^2 = \frac{\sum f(x-\bar{x})^2}{\sum f}$
$=\frac{\sum x^2}{n}-\bar{x}^2$	$=\frac{\Sigma f x^2}{\Sigma f} - \bar{x}^2$
$=\frac{\sum x^2}{n} - \left(\frac{\sum x}{n}\right)^2$	$=\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2$
$=\frac{S_{XX}}{n}$	$=\frac{S_{xx}}{n}$
(Not given in the formula booklet)	(Not given in the formula booklet)
Standard Deviation, $\sigma = \sqrt{\frac{\sum (x - \bar{x})^2}{n}}$	Standard Deviation, $\sigma = \sqrt{\frac{\sum f(x-\bar{x})^2}{\sum f}}$
$=\sqrt{rac{\Sigma x^2}{n}-ar{x}^2}$	$= \sqrt{\frac{\sum f x^2}{\sum f} - \bar{x}^2}$
$=\sqrt{\frac{\sum x^2}{n} - \left(\frac{\sum x}{n}\right)^2}$	$= \sqrt{\frac{\sum f x^2}{\sum f} - \left(\frac{\sum f x}{\sum f}\right)^2}$
$=\sqrt{\frac{S_{XX}}{n}}$	$=\sqrt{rac{S_{XX}}{n}}$
(Given in the formula booklet)	(Given in the formula booklet)