Mixed Exercise - 3

1.

The points A and B have coordinates (5, -1) and (13, 11) respectively.

(a) Find the coordinates of the mid-point of AB.

(2)

Given that AB is a diameter of the circle C,

(b) find an equation for C.

(4)

2.

The circle C, with centre at the point A, has equation $x^2 + y^2 - 10x + 9 = 0$.

Find

(a) the coordinates of A,

(2)

(b) the radius of C,

(2)

(c) the coordinates of the points at which C crosses the x-axis.

(2)

Given that the line l with gradient $\frac{7}{2}$ is a tangent to C, and that l touches C at the point T,

(d) find an equation of the line which passes through A and T.

(3)

Question 3 is on the next page.

Figure 1

The line y = 3x - 4 is a tangent to the circle C, touching C at the point P(2, 2), as shown in Figure 1.

The point Q is the centre of C.

(a) Find an equation of the straight line through P and Q. (3)

Given that Q lies on the line y = 1,

(b) show that the x-coordinate of Q is 5, (1)

(c) find an equation for C. (4)

4.

The point A has coordinates (1,1) and the point B has coordinates (5, k).

The line AB has equation 3x + 4y = 7.

- (a) (i) Show that k = -2. (1 mark)
 - (ii) Hence find the coordinates of the mid-point of AB. (2 marks)
- (b) Find the gradient of AB. (2 marks)
- (c) The line AC is perpendicular to the line AB.
 - (i) Find the gradient of AC. (2 marks)
 - (ii) Hence find an equation of the line AC. (1 mark)
 - (iii) Given that the point C lies on the x-axis, find its x-coordinate. (2 marks)

5.

- (a) (i) Express $x^2 4x + 9$ in the form $(x p)^2 + q$, where p and q are integers.
 - (ii) Hence, or otherwise, state the coordinates of the minimum point of the curve with equation $y = x^2 4x + 9$. (2 marks)
- (b) The line L has equation y + 2x = 12 and the curve C has equation $y = x^2 4x + 9$.
 - (i) Show that the x-coordinates of the points of intersection of L and C satisfy the equation

$$x^2 - 2x - 3 = 0 (1 mark)$$

(ii) Hence find the coordinates of the points of intersection of L and C. (4 marks)

6.

The quadratic equation $x^2 + (m+4)x + (4m+1) = 0$, where m is a constant, has equal roots.

(a) Show that $m^2 - 8m + 12 = 0$.

(3 marks)

(b) Hence find the possible values of m.

(2 marks)

7. Solve,

$$2x^2 - 5x - 7 < 0$$

8. Sketch the following graphs showing the coordinates of the points where they intersect the coordinate axes.

(a)
$$y = (2-x)(x-4)(x-1)$$

(b)
$$y = (x-1)^2(x+6)$$

(c)
$$y = x^3 + 5x^2 + 4x$$

9.

- **a** Expand $(1 2x)^{10}$ in ascending powers of x up to and including the term in x^3 , simplifying each coefficient in the expansion.
- **b** Use your expansion to find an approximation to $(0.98)^{10}$, stating clearly the substitution which you have used for x.

10.

If x is so small that terms of x^3 and higher can be ignored, show that:

$$(2+x)(1-3x)^5 \approx 2-29x+165x^2$$