Exercise A

1 Solve the following equations for θ , in the interval $0 < \theta \le 360^{\circ}$:

$$\mathbf{a} \sin \theta = -1$$

$$\mathbf{c} \cos \theta = \frac{1}{2}$$

$$e \cos \theta = -\cos 40^{\circ}$$

$$\mathbf{g} \cos \theta = 0$$

i
$$7 \sin \theta = 5$$

$$\mathbf{k} \sqrt{3} \sin \theta = \cos \theta$$

$$\mathbf{m} 3 \cos \theta = -2$$

$$\bullet \ \tan \theta = \tan \theta (2 + 3 \sin \theta)$$

b tan
$$\theta = \sqrt{3}$$

d
$$\sin \theta = \sin 15^{\circ}$$

f
$$\tan \theta = -1$$

h
$$\sin \theta = -0.766$$

$$\mathbf{i} \quad 2\cos\theta = -\sqrt{2}$$

$$\mathbf{I} \quad \sin \theta + \cos \theta = 0$$

$$\mathbf{n} (\sin \theta - 1)(5\cos \theta + 3) = 0$$

2 Solve the following equations for x, giving your answers to 3 significant figures where appropriate, in the intervals indicated:

a
$$\sin x^{\circ} = -\frac{\sqrt{3}}{2}, -180 \le x \le 540$$

b
$$2 \sin x^{\circ} = -0.3, -180 \le x \le 180$$

$$c \cos x^{\circ} = -0.809, -180 \le x \le 180$$

d
$$\cos x^{\circ} = 0.84, -360 < x < 0$$

e
$$\tan x^{\circ} = -\frac{\sqrt{3}}{3}, \ 0 \le x \le 720$$

f
$$\tan x^{\circ} = 2.90, 80 \le x \le 440$$

3.

Find the values of θ , in the interval $0 \le \theta \le 360^{\circ}$, for which:

$$\mathbf{a} \sin 4\theta = 0$$

b
$$\cos 3\theta = -1$$

c
$$\tan 2\theta = 1$$

d
$$\cos 2\theta = \frac{1}{2}$$

a
$$\sin 4\theta = 0$$
 b $\cos 3\theta = -1$ **c** $\tan 2\theta = 1$ **d** $\cos 2\theta = \frac{1}{2}$ **e** $\tan \frac{1}{2}\theta = -\frac{1}{\sqrt{3}}$ **f** $\sin (-\theta) = \frac{1}{\sqrt{2}}$ **g** $\tan (45^{\circ} - \theta) = -1$

$$\mathbf{f} \sin(-\theta) = \frac{1}{\sqrt{2}}$$

$$\mathbf{g} \tan (45^{\circ} - \theta) = -1$$

h
$$2\sin(\theta - 20^\circ) = 1$$
 i $\tan(\theta + 75^\circ) = \sqrt{3}$ **j** $\cos(50^\circ + 2\theta) = -1$

$$\mathbf{j} \quad \cos\left(50^\circ + 2\theta\right) = -1$$

Exercise B

1 Simplify each of the following expressions:

a
$$1 - \cos^2 \frac{1}{2}\theta$$

b
$$5 \sin^2 3\theta + 5 \cos^2 3\theta$$

$$\mathbf{c} \sin^2 A - 1$$

$$\mathbf{d} \frac{\sin \theta}{\tan \theta}$$

$$e^{\frac{\sqrt{1-\cos^2x}}{\cos x}}$$

$$f = \frac{\sqrt{1 - \cos^2 3A}}{\sqrt{1 - \sin^2 3A}}$$

$$\mathbf{g} (1 + \sin x)^2 + (1 - \sin x)^2 + 2\cos^2 x$$

h
$$\sin^4 \theta + \sin^2 \theta \cos^2 \theta$$

i
$$\sin^4 \theta + 2 \sin^2 \theta \cos^2 \theta + \cos^4 \theta$$

2 Given that $2 \sin \theta = 3 \cos \theta$, find the value of $\tan \theta$.

3 Given that $\sin x \cos y = 3 \cos x \sin y$, express $\tan x$ in terms of $\tan y$.

4 Express in terms of $\sin \theta$ only:

$$\mathbf{a} \cos^2 \theta$$

b
$$\tan^2 \theta$$

$$\mathbf{c} \cos \theta \tan \theta$$

$$\mathbf{d} \; \frac{\cos \theta}{\tan \theta} \; .$$

$$\mathbf{e} (\cos \theta - \sin \theta)(\cos \theta + \sin \theta)$$

5 Using the identities $\sin^2 A + \cos^2 A = 1$ and/or $\tan A = \frac{\sin A}{\cos^4 A}$ ($\cos A \neq 0$), prove that:

$$\mathbf{a} (\sin \theta + \cos \theta)^2 \equiv 1 + 2 \sin \theta \cos \theta$$

$$\mathbf{b} \, \frac{1}{\cos \theta} - \cos \theta = \sin \theta \tan \theta$$

$$\mathbf{c} \ \tan x + \frac{1}{\tan x} \equiv \frac{1}{\sin x \cos x}$$

d
$$\cos^2 A - \sin^2 A = 2\cos^2 A - 1 = 1 - 2\sin^2 A$$

e
$$(2 \sin \theta - \cos \theta)^2 + (\sin \theta + 2 \cos \theta)^2 \equiv 5$$

f
$$2 - (\sin \theta - \cos \theta)^2 \equiv (\sin \theta + \cos \theta)^2$$

$$\mathbf{g} \sin^2 x \cos^2 y - \cos^2 x \sin^2 y = \sin^2 x - \sin^2 y$$

6 Find, without using your calculator, the values of:

a $\sin \theta$ and $\cos \theta$, given that $\tan \theta = \frac{5}{12}$ and θ is acute.

b $\sin \theta$ and $\tan \theta$, given that $\cos \theta = -\frac{3}{5}$ and θ is obtuse.

c $\cos \theta$ and $\tan \theta$, given that $\sin \theta = -\frac{7}{25}$ and $270^{\circ} < \theta < 360^{\circ}$.

Exercise C

Solve for θ , in the interval $0 \le \theta \le 360^{\circ}$, the following equations.

Give your answers to 3 significant figures where they are not exact.

a
$$4\cos^2\theta = 1$$

b
$$2\sin^2\theta - 1 = 0$$

c
$$3\sin^2\theta + \sin\theta = 0$$

$$\mathbf{d} \tan^2 \theta - 2 \tan \theta - 10 = 0 .$$

e
$$2\cos^2\theta - 5\cos\theta + 2 = 0$$

 $i \sin \theta + 2\cos^2 \theta + 1 = 0$

$$\mathbf{f} \sin^2 \theta - 2 \sin \theta - 1 = 0$$

$$\mathbf{g} \tan^2 2\theta = 3$$

h
$$4 \sin \theta = \tan \theta$$

k
$$3 \sin^2 \theta = \sin \theta \cos \theta$$

j
$$\tan^2(\theta - 45^\circ) = 1$$

$$\mathbf{k} \ 3 \sin^2 \theta = \sin \theta \cos \theta$$

$$1 \quad 4\cos\theta(\cos\theta - 1) = -5\cos\theta$$

$$\mathbf{m} \, 4 \left(\sin^2 \theta - \cos \theta \right) = 3 - 2 \cos \theta$$

$$\mathbf{n} \ 2\sin^2\theta = 3(1-\cos\theta)$$

$$\bullet \ 4\cos^2\theta - 5\sin\theta - 5 = 0$$

$$\mathbf{p} \cos^2 \frac{\theta}{2} = 1 + \sin \frac{\theta}{2}$$