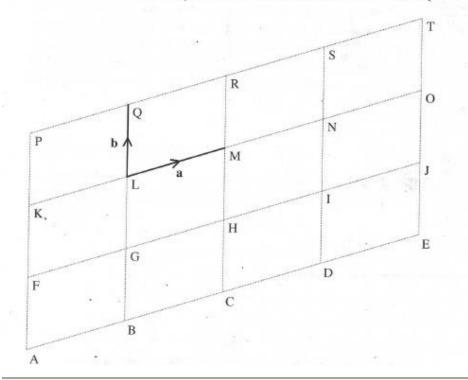

Mathematics

Exercise A

In Questions 1 to 15, use the diagram below to describe the vectors given in terms of c and d where $\mathbf{c} = \overrightarrow{QN}$ and $\mathbf{d} = \overrightarrow{QR}$, e.g. $\overrightarrow{QS} = 2\mathbf{d}$, $\overrightarrow{TD} = \mathbf{c} + \mathbf{d}$.


Vectors - 1

In Questions 16 to 21, use the same diagram above to find vectors for the following in terms of the capital letters, starting from Q each time.

e.g. $3\mathbf{d} = \overrightarrow{\mathbf{QT}}, \mathbf{c} + \overrightarrow{\mathbf{QT}}$	$-\mathbf{d} = \overrightarrow{\mathbf{Q}\mathbf{A}}.$	
16. 2c	17. 4d	18: 2c + d
19. 2 d + c	20. $3d + 2c$	21. 2c – d

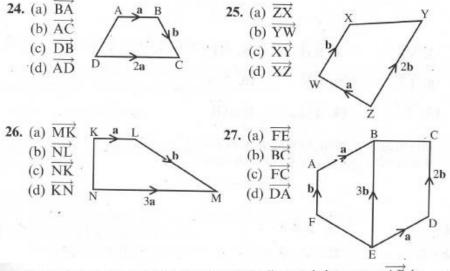
In Questions 22 and 23, use the diagram below. $\overrightarrow{LM} = \mathbf{a}, \overrightarrow{LQ} = \mathbf{b}$.

NB Tutors Ltd, Unit 79, Capital Business Centre, 22 Carlton Road, South Croydon, CR2 OBS

22. Write these vectors in terms of a and b.

(a) GN	(b) CO	(c) \overrightarrow{TN}
(d) \overrightarrow{FT}	(e) KC	(f) \overrightarrow{CJ}

23. From your answers to Question 22, find the vector which is:


(a) parallel to \overrightarrow{LR}

(b) 'opposite' to \overrightarrow{LR}

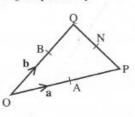
(c) parallel to \overrightarrow{CJ} with twice the magnitude

(d) parallel to the vector $(\mathbf{a} - \mathbf{b})$.

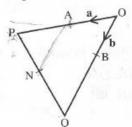
In Questions 24 to 27, write each vector in terms of a, b, or a and b.

28. The points A, B and C lie on a straight line and the vector AB is a + 2b. Which of the following vectors is possible for AC:
(a) 3a + 6b
(b) 4a + 4b
(c) a - 2b
(d) 5a + 10b?

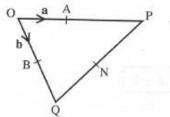
29. Find three pairs	s of parallel	vectors	from	those	below.
----------------------	---------------	---------	------	-------	--------

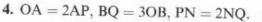

a	+ 3b	a – b	6 a - 3 b	2 a + 6 b	3 a - 3 b	2 a - b	a + b
	A	В	С	D	Е	F	G

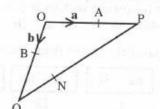
Exercise B

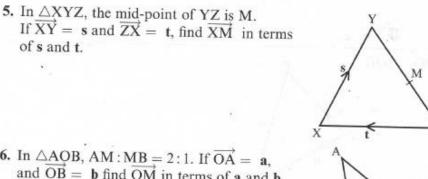

In Questions 1 to 4, $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$. Copy each diagram and use the information given to express the following vectors in terms of \mathbf{a} , \mathbf{b} or \mathbf{a} and \mathbf{b} .

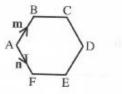
(a) \overrightarrow{AP}	(b) \overrightarrow{AB}	(c) \overrightarrow{OQ}	(d) \overrightarrow{PO}	(e) \overrightarrow{PQ}
(f) \overrightarrow{PN}	(g) \overrightarrow{ON}	(h) \overrightarrow{AN}	(i) \overrightarrow{BP}	(j) QA


1. A, B and N are mid-points of OP, OB and PQ respectively.


2. A and N are mid-points of OP and PQ; BQ = 2OB.



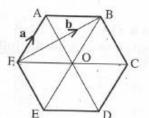


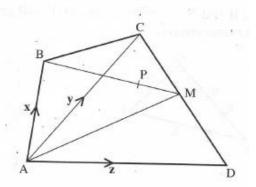

of s and t. ς.

- 6. In $\triangle AOB$, AM : MB = 2:1. If $\overrightarrow{OA} = \mathbf{a}$, and $\overrightarrow{OB} = \mathbf{b}$ find \overrightarrow{OM} in terms of \mathbf{a} and \mathbf{b} .
- 7. O is any point in the plane of the square ABCD. The vectors \overrightarrow{OA} , \overrightarrow{OB} , and \overrightarrow{OC} , are **a**, **b** and **c** respectively. Find the vector \overrightarrow{OD} , in terms of **a**, **b** and **c**.
- 8. ABCDEF is a regular hexagon with \overline{AB} , representing the vector \mathbf{m} and \overrightarrow{AF} , representing the vector **n**. Find the vector representing \overrightarrow{AD} .

М

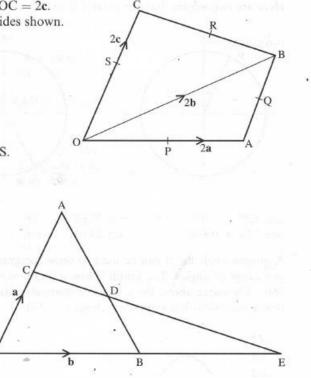
9. ABCDEF is a regular hexagon with centre O. $\overrightarrow{FA} = a \text{ and } \overrightarrow{FB} = b.$


Express the following vectors in terms of a and/or b.


(a) \overrightarrow{AB}		10 D.s
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(b) FO	(c) \overrightarrow{FC}
(d) \overrightarrow{BC}	(e) AO	(f) \overrightarrow{FD} .

10. In the diagram, M is the mid-point of CD, $BP:PM = 2:1, \overrightarrow{AB} = x, and \overrightarrow{AC} = y and$ $\overrightarrow{AD} = \mathbf{z}.$

Express the following vectors in terms of \mathbf{x} , \mathbf{y} and \mathbf{z} .


(a) \overrightarrow{DC} (b) DM (c) AM (d) \overrightarrow{BM} (e) BP $(f) \overrightarrow{AP}$

(Please turn over for more questions)

- 11. In the quadrilateral shown $\overrightarrow{OA} = 2a$, $\overrightarrow{OB} = 2b$, $\overrightarrow{OC} = 2c$. Points P, Q, R and S are the mid-points of the sides shown.
 - (a) Express in terms of **a**, **b** and **c**:
 - (i) AB
 - (ii) BC
 - (iii) PQ
 - (iv) \overrightarrow{QR}
 - $(v) \overrightarrow{PS}$.
 - (b) Describe the relationship between QR and PS.
 - (c) What sort of quadrilateral is PQRS?
- 12. In the diagram, $\overrightarrow{OA} = \mathbf{a}$, $\overrightarrow{OB} = \mathbf{b}$, OC = CA, OB = BE and BD : DA = 1 : 2.
 - (a) Express in terms of a and b:
 - (i) BA
 - (ii) BD
 - (iii) \overrightarrow{CD}
 - (iv) \overrightarrow{CE} .
 - (b) Explain why points C, D and E lie on a straight line.

