Mixed Exercise 1

1.

Simplify
$$\frac{12ab^{-2} - 16a}{8ab}$$

2.

Write in the form $ax^p + bx^q$:

a i
$$\frac{(3+2x)}{\sqrt{x}}$$

ii
$$\frac{\left(4-3\sqrt{x}\right)}{x}$$

b i
$$\frac{(x^2-3)}{(2x)}$$

ii
$$\frac{(4x-3)}{(2x^2)}$$

c i
$$\frac{(2x^2+1)^2}{4\sqrt{x}}$$

ii
$$\frac{\left(2-9\sqrt{x}\right)}{(3x)}$$

3.

Simplify
$$\frac{\left(16a^2b^8\right)^{\frac{1}{2}}}{ab^3}$$

4.

Simplify
$$(3x^9 + \frac{3}{8}x^9)^{-\frac{1}{3}}$$
.

5.

If
$$\sqrt{3^{2a+b}} = \frac{27^a}{3^b}$$
 express a in terms of b .

6.

Express
$$\left(3x^{\frac{3}{4}} - x^{-\frac{3}{4}}\right)^2$$
 in the form $ax^n + \frac{b}{x^n} + c$ where a , b , c and n are to be found.

7.

Make x the subject of the equation $4^{ax} = b \times 8^x$ where a and b are constants. Leave your answer in a simplified form.

8.

Simplify
$$\frac{1}{1+\sqrt{n}} + \frac{1}{1-\sqrt{n}}$$
.

9.

Show that $\frac{4}{\sqrt{20}-\sqrt{12}}$ can be written in the form $\sqrt{a}+\sqrt{b}$ where a and b are whole numbers.

10.

Explain without using decimal approximations why $3\sqrt{2}$ is larger than $2\sqrt{3}$.

11.

Solve the equation $x\sqrt{27} = 5x\sqrt{3} + 2\sqrt{48}$.

12.

Rationalise the denominator of $\frac{1}{2\sqrt{n}-3}$.

13.

If *n* is a positive whole number write $(n\sqrt{15} - \sqrt{5})^2$ in the form $a + b\sqrt{3}$.

14.

A rectangle has length $a+b\sqrt{2}$ and width $b-a\sqrt{2}$.

- a Find the area of the rectangle in the form $m+n\sqrt{2}$.
- b Find and simplify an expression for the length of the diagonal of the rectangle.

15.

- a Write $\sqrt{27} + \sqrt{3}$ in the form \sqrt{a} .
- **b** Explain without using decimal approximations whether $\sqrt{27} \sqrt{20}$ is bigger or smaller than $\sqrt{5} \sqrt{3}$.

16.

- a Find and simplify an expression for $(a+b\sqrt{2})^2$.
- **b** By considering $(1-\sqrt{2})^4$ prove that $\sqrt{2} < \frac{17}{12}$.

17.

- a Show that $a^3 b^3 = (a b)(a^2 + ab + b^2)$.
- **b** Hence rationalise the denominator of $\frac{1}{\sqrt[3]{3} \sqrt[3]{2}}$.

18.

Is it always true that $\sqrt{x^2}$ equals x?