Integration – Year 12

Exercise A

1 Find the following integrals:

a
$$\int (2x+3)x^2 dx$$

b $\int \frac{(2x^2+3)}{x^2} dx$
c $\int (2x+3)^2 dx$
d $\int (2x+3)(x-1) dx$
e $\int (2x+3)\sqrt{x} dx$

2 Find $\int f(x) dx$ when f(x) is given by the following:

a
$$(x+2)^2$$

b $\left(x+\frac{1}{x}\right)^2$
c $(\sqrt{x}+2)^2$
d $\sqrt{x}(x+2)$
e $\left(\frac{x+2}{\sqrt{x}}\right)$
f $\left(\frac{1}{\sqrt{x}}+2\sqrt{x}\right)$

3 Find the following integrals:

a
$$\int \left(3\sqrt{x} + \frac{1}{x^2}\right) dx$$

b
$$\int \left(\frac{2}{\sqrt{x}} + 3x^2\right) dx$$

c
$$\int \left(x^{\frac{2}{3}} + \frac{4}{x^3}\right) dx$$

d
$$\int \left(\frac{2+x}{x^3} + 3\right) dx$$

e
$$\int (x^2 + 3)(x - 1) dx$$

f
$$\int \left(\frac{2}{\sqrt{x}} + 3x\sqrt{x}\right) dx$$

g
$$\int (x - 3)^2 dx$$

h
$$\int \frac{(2x + 1)^2}{\sqrt{x}} dx$$

i
$$\int \left(3 + \frac{\sqrt{x} + 6x^3}{x}\right) dx$$

j
$$\int \sqrt{x}(\sqrt{x} + 3)^2 dx$$

Exercise B

1 Evaluate the following definite integrals:

a
$$\int_{1}^{2} \left(\frac{2}{x^{3}} + 3x\right) dx$$

b $\int_{0}^{2} (2x^{3} - 4x + 5) dx$
c $\int_{4}^{9} \left(\sqrt{x} - \frac{6}{x^{2}}\right) dx$
d $\int_{1}^{2} \left(6x - \frac{12}{x^{4}} + 3\right) dx$
e $\int_{1}^{8} (x^{-\frac{1}{3}} + 2x - 1) dx$

2 Evaluate the following definite integrals:

a
$$\int_{1}^{3} \left(\frac{x^{3}+2x^{2}}{x}\right) dx$$

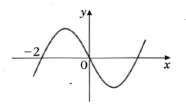
b $\int_{1}^{4} (\sqrt{x}-3)^{2} dx$
d $\int_{0}^{1} x^{2} \left(\sqrt{x}+\frac{1}{x}\right) dx$
e $\int_{1}^{4} \frac{2+\sqrt{x}}{x^{2}} dx$

 $\mathbf{c} \quad \int_3^6 \left(x - \frac{3}{x} \right)^2 \mathrm{d}x$

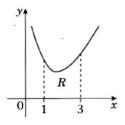
Exercise C

- **1** Find the equation of the curve with the given derivative of y with respect to x that passes through the given point:
- **a** $\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 + 2x;$ point (2, 10) **b** $\frac{dy}{dx} = 4x^3 + \frac{2}{x^3} + 3;$ point (1, 4) $\mathbf{c} \quad \frac{\mathrm{d}y}{\mathrm{d}x} = \sqrt{x} + \frac{1}{4}x^2;$ point (4, 11) **d** $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3}{\sqrt{x}} - x;$ point (4, 0) $e \quad \frac{\mathrm{d}y}{\mathrm{d}x} = (x+2)^2;$
 - $\mathbf{f} \quad \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x^2 + 3}{\sqrt{x}};$ point (0, 1)
 - **2** The curve C, with equation y = f(x), passes through the point (1, 2) and $f'(x) = 2x^3 \frac{1}{x^2}$. Find the equation of *C* in the form y = f(x).

point (1, 7)


- **3** The gradient of a particular curve is given by $\frac{dy}{dr} = \frac{\sqrt{x}+3}{r^2}$. Given that the curve passes through the point (9, 0), find an equation of the curve.
- **4** A set of curves, that each pass through the origin, have equations $y = f_1(x)$, $y = f_2(x)$, $y = f_3(x) \dots$ where $f'_n(x) = f_{n-1}(x)$ and $f_1(x) = x^2$. **a** Find $f_2(x)$, $f_3(x)$.
 - **b** Suggest an expression for $f_n(x)$.
- **5** A set of curves, with equations $y = f_1(x)$, $y = f_2(x)$, $y = f_3(x)$... all pass through the point (0, 1) and they are related by the property $f'_n(x) = f_{n-1}(x)$ and $f_1(x) = 1$. Find $f_2(x)$, $f_3(x)$, $f_4(x)$.

Exercise D


1 Find the area between the curve with equation y = f(x), the x-axis and the lines x = a and x = b in each of the following cases:

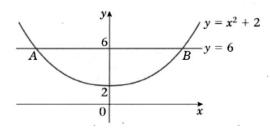
a $f(x) = 3x^2 - 2x + 2;$	a = 0, b = 2
b $f(x) = x^3 + 4x;$	a = 1, b = 2
c $f(x) = \sqrt{x} + 2x;$	a = 1, b = 4
d $f(x) = 7 + 2x - x^2;$	a = -1, b = 2
e $f(x) = \frac{8}{x^3} + \sqrt{x};$	a = 1, b = 4

2 The sketch shows part of the curve with equation $y = x(x^2 - 4)$. Find the area of the shaded region.

3 The diagram shows a sketch of the curve with equation $y = 3x + \frac{6}{x^2} - 5$, x > 0. The region *R* is bounded by the curve, the *x*-axis and the lines x = 1 and x = 3. Find the area of *R*.

- **4** Find the area of the finite region between the curve with equation y = (3 x)(1 + x) and the *x*-axis.
- 5 Find the area of the finite region between the curve with equation $y = x(x 4)^2$ and the *x*-axis.
- **6** Find the area of the finite region between the curve with equation $y = x^2(2 x)$ and the *x*-axis.

Exercise E

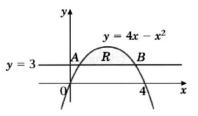

Sketch the following and find the area of the finite region or regions bounded by the curves and the *x*-axis:

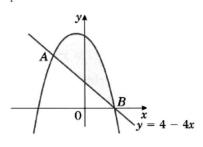
1 y = x(x + 2)3 y = (x + 3)x(x - 3)5 y = x(x - 2)(x - 5) **2** y = (x + 1)(x - 4)**4** $y = x^2(x - 2)$

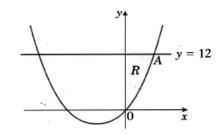
(Exercise F is on the next page)

Exercise F

1 The diagram shows part of the curve with equation $y = x^2 + 2$ and the line with equation y = 6. The line cuts the curve at the points *A* and *B*.


- **a** Find the coordinates of the points *A* and *B*.
- **b** Find the area of the finite region bounded by *AB* and the curve.
- **2** The diagram shows the finite region, *R*, bounded by the curve with equation $y = 4x x^2$ and the line y = 3. The line cuts the curve at the points *A* and *B*.


a Find the coordinates of the points A and B.

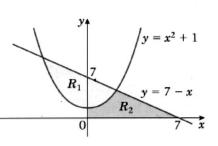

- **b** Find the area of *R*.
- **3** The diagram shows a sketch of part of the curve with equation $y = 9 3x 5x^2 x^3$ and the line with equation y = 4 4x. The line cuts the curve at the points A (-1, 8) and B (1, 0).

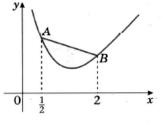
Find the area of the shaded region between *AB* and the curve.

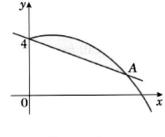
- **4** Find the area of the finite region bounded by the curve with equation y = (1 x)(x + 3) and the line y = x + 3.
- 5 The diagram shows the finite region, *R*, bounded by the curve with equation y = x(4 + x), the line with equation y = 12 and the y-axis.
 - **a** Find the coordinate of the point *A* where the line meets the curve.
 - **b** Find the area of *R*.

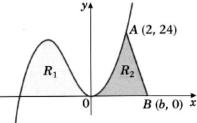
(This exercise continues on the next page)

- **6** The diagram shows a sketch of part of the curve with equation $y = x^2 + 1$ and the line with equation y = 7 x. The finite region R_1 is bounded by the line and the curve. The finite region R_2 is below the curve and the line and is bounded by the positive *x* and *y*-axes as shown in the diagram.
 - **a** Find the area of R_1 .
 - **b** Find the area of *R*₂.
- 7 The curve *C* has equation $y = x^{\frac{2}{3}} \frac{2}{x^{\frac{1}{3}}} + 1$.
 - a Verify that C crosses the x-axis at the point (1, 0).
 - **b** Show that the point *A* (8, 4) also lies on *C*.
 - **c** The point *B* is (4, 0). Find the equation of the line through *AB*. The finite region *R* is bounded by *C*, *AB* and the positive *x*-axis.
 - **d** Find the area of *R*.
- 8 The diagram shows part of a sketch of the curve with equation


 $y = \frac{2}{x^2} + x$. The points *A* and *B* have *x*-coordinates $\frac{1}{2}$ and 2 respectively.


Find the area of the finite region between AB and the curve.


- **9** The diagram shows part of the curve with equation $y = 3\sqrt{x} \sqrt{x^3} + 4$ and the line with equation $y = 4 \frac{1}{2}x$.
 - **a** Verify that the line and the curve cross at the point *A* (4, 2).
 - **b** Find the area of the finite region bounded by the curve and the line.
- **10** The sketch shows part of the curve with equation $y = x^2(x + 4)$. The finite region R_1 is bounded by the curve and the negative *x*-axis. The finite region R_2 is bounded by the curve, the positive *x*-axis and *AB*, where *A* (2, 24) and *B* (*b*, 0).


The area of R_1 = the area of R_2 . **a** Find the area of R_1 .

b Find the value of *b*.

